Abstract
Graphical abstract

Keywords
1. Introduction

2. Within host-modelling in the two years of the COVID-19 pandemic
2.1 Within-host immunological mathematical models based on ordinary differential equations
- Beauchemin C.A.A.
- Handel A.
- Zarnitsyna V.I.
- et al.
- Myers M.A.
- et al.
- Antia R.
- et al.
- Sugden B.
- et al.
- Yong B.
- Owen L.
- Chang H.J.
- Conway J.M.
- Abel Zur Wiesch P.
- Kim K.S.
- et al.
Kim, K.S. et al. A quantitative model used to compare within-host SARS-CoV-2, MERS-CoV, and SARS-CoV dynamics provides insights into the pathogenesis and treatment of SARS-CoV-2. PLOS Biology. 2021 19(3): e3001128. https://doi.org/10.1371/journal.pbio.3001128.
Kim, K.S. et al. A quantitative model used to compare within-host SARS-CoV-2, MERS-CoV, and SARS-CoV dynamics provides insights into the pathogenesis and treatment of SARS-CoV-2. PLOS Biology. 2021 19(3): e3001128. https://doi.org/10.1371/journal.pbio.3001128.
- Beauchemin C.A.A.
- Handel A.
- Koelle K.
- Farrell A.P.
- Brooke C.B.
- Ke R.
- Néant N.
- et al.
- Chen P.Z.
- et al.
- Ke R.
- Zitzmann C.
- Ho D.D.
- Ribeiro R.M.
- Perelson A.S.
- Wang S.
- et al.
- Fadai N.T.
- et al.
- Jenner A.L.
- et al.
- Voutouri C.
- et al.
- Zarnitsyna V.I.
- et al.
- Myers M.A.
- et al.
- Dan J.M.
- et al.
- Cohen K.W.
- et al.
- Hartley G.E.
- et al.
- Korosec C.S.
- et al.
- Sadria M.
- Layton A.T.
- Nath B.J.
- Dehingia K.
- Mishra V.N.
- Chu Y.M.
- Sarmah H.K.
- Ghosh I.
- Regoes R.R.
- et al.
- Prague M.
- Alexandre M.
- Thiébaut R.
- Guedj J.
2.2 Computational, stochastic, and probabilistic models of SARS-CoV-2 dynamics
- Miller-Jensen K.
- Cess C.G.
- Finley S.D.
- Jenner A.L.
- et al.
Hoertel, N. et al. Facing the COVID-19 epidemic in NYC: a stochastic agent-based model of various intervention strategies. medRxiv: the preprint server for health sciences, 2020.2004.2023.20076885 (2020). 10.1101/2020.04.23.20076885.
- Read A.F.
- et al.
- Ogden N.H.
- et al.
- Warne D.J.
- et al.
- Read A.F.
- et al.
- Garg A.K.
- Mittal S.
- Padmanabhan P.
- Desikan R.
- Dixit N.M
- Korosec C.S.
- et al.
- Sego T.J.
- et al.
- Ferrari Gianlupi J.
- et al.
Getz, M. et al. Rapid community-driven development of a SARS-CoV-2 tissue simulator. Biorxiv, 2020.2004.2002.019075-012020.019004.019002.019075 (2020). 10.1101/2020.04.02.019075.
- Trouillet-Assant S.
- et al.
- Ahmed S.F.
- Quadeer A.A.
- McKay M.R.
3. Population genetics of viral evolution
- Redondo N.
- Zaldívar-López S.
- Garrido J.J.
- Montoya M.
- Kockler Z.W.
- Gordenin D.A.
3.1 Phylogeny and population genetics to understand the origins and evolution of SARS-CoV-2
- Li T.
- et al.
- Sagulenko P.
- Puller V.
- Neher R.A.
- Duchene S.
- et al.
- Vasilarou M.
- Alachiotis N.
- Garefalaki J.
- Beloukas A.
- Pavlidis P.
- De Maio N.
- et al.
Kim, K. et al. APOBEC-mediated editing of SARS-CoV-2 genomic RNA impacts viral replication and fitness. Biorxiv (2022). 10.1101/2021.12.18.473309.
3.2 Genomic surveillance, natural selection, and variants of concern
- Díez-Fuertes F.
- et al.
- Zhang L.
- et al.
- O'Toole Á.
- et al.
OliverPybus. Pango Lineage Nomenclature: provisional rules for naming recombinant lineages, <https://virological.org/t/pango-lineage-nomenclature-provisional-rules-for-naming-recombinant-lineages/657>(2021).
- Mostefai F.
- et al.
- Schiøler H.
- Knudsen T.
- Brøndum R.F.
- Stoustrup J.
- Bøgsted M.
Zhan, X.Y. et al. Molecular evolution of SARS-CoV-2 structural genes: evidence of positive selection in spike glycoprotein. Biorxiv (2020). 10.1101/2020.06.25.170688.
- van Dorp L.
- et al.
Mullen, J.L. et al. outbreak.info, <https://outbreak.info/>(2020).
- Wilkinson S.A.J.
- et al.
3.3 Human-host genetic interactions
- Di Giorgio S.
- Martignano F.
- Torcia M.G.
- Mattiuz G.
- Conticello S.G.
- Ramazzotti D.
- et al.
- Graudenzi A.
- Maspero D.
- Angaroni F.
- Piazza R.
- Ramazzotti D.
- Simmonds P.
- Schwemmle M.
Kim, K. et al. APOBEC-mediated editing of SARS-CoV-2 genomic RNA impacts viral replication and fitness. Biorxiv (2022). 10.1101/2021.12.18.473309.
- Popa A.
- et al.
- Martin M.A.
- Koelle K.
- Zietz M.
- Zucker J.
- Tatonetti N.P.
- Kasela S.
- et al.
- Smieszek S.P.
- et al.
- Yao Y.
- et al.
- Zeberg H.
- Pääbo S.
- Horowitz J.E.
- et al.
4. Data visualization with dimensionality reduction techniques
- Toghi Eshghi S.
- et al.
- Kuchroo M.
- et al.
- Rébillard R.M.
- et al.
- Rébillard R.M.
- et al.
- Rébillard R.M.
- et al.
- Zare H.
- Shooshtari P.
- Gupta A.
- Brinkman R.R.
- Rébillard R.M.
- et al.
- Rébillard R.M.
- et al.
- Rébillard R.M.
- et al.
- Toghi Eshghi S.
- et al.
- Toghi Eshghi S.
- et al.
- Jolliffe I.T.
- Cadima J.
- Kuchroo M.
- et al.
- Kuchroo M.
- et al.
- Kuchroo M.
- et al.
- Kuchroo M.
- et al.
- Krishnaswamy S.
- et al.
5. Predictive machine learning approaches
- (1)Vaccine development [[148],[149]] and drug re-purposing [
Fast, E., Altman, R.B. & Chen, B. Potential T-cell and B-cell epitopes of 2019-nCoV. Biorxiv, 1–9 (2020). 10.1101/2020.02.19.955484.
150,- Che M.
- Yao K.
- Che C.
- Cao Z.
- Kong F.
Knowledge-graph-based drug repositioning against COVID-19 by graph convolutional network with attention mechanism.Future Internet. 2021; 13https://doi.org/10.3390/fi13010013151,152,153]. - (2)Patient triage for severity assessment and mortality prediction [154,
- Subudhi S.
- et al.
Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19.npj Digit Med. 2021; 4https://doi.org/10.1038/s41746-021-00456-x155,- Kar S.
- et al.
Multivariable mortality risk prediction using machine learning for COVID-19 patients at admission (AICOVID).Sci Rep. 2021; 11https://doi.org/10.1038/s41598-021-92146-7156].- Lalmuanawma S.
- Hussain J.
- Chhakchhuak L.
Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: a review.Chaos Solit Fractals. 2020; 139https://doi.org/10.1016/j.chaos.2020.110059 - (3)Epidemiological forecasting [[157],
- Pitzer V.E.
- et al.
Pandemic velocity: forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model.PLoS Comput Biol. 2021; 17https://doi.org/10.1371/journal.pcbi.1008837[158]].- Wang P.
- Zheng X.
- Li J.
- Zhu B.
Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics.Chaos Solit Fractals. 2020; 139https://doi.org/10.1016/j.chaos.2020.110058 - (4)Detection of anomalies from medical images such as CT scans [159,160,
- Wang S.
- et al.
A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis.Eur Respir J. 2020; 56https://doi.org/10.1183/13993003.00775-2020161], chest X-rays [[162]], ultrasound images [- Zargari Khuzani A.
- Heidari M.
- Shariati S.A.
COVID-Classifier: an automated machine learning model to assist in the diagnosis of COVID-19 infection in chest X-ray images.Sci Rep. 2021; 11https://doi.org/10.1038/s41598-021-88807-2[163]] and blood tests [- Wang L.
- Lin Z.Q.
- Wong A.
COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images.Sci Rep. 2020; 10https://doi.org/10.1038/s41598-020-76550-z[164]].- Kukar M.
- et al.
COVID-19 diagnosis by routine blood tests using machine learning.Sci Rep. 2021; 11https://doi.org/10.1038/s41598-021-90265-9
5.1 Machine learning approaches to COVID-19 vaccine development
- Pritam M.
- Singh G.
- Swaroop S.
- Singh A.K.
- Singh S.P.
- Heinson A.
- et al.
- Doytchinova I.A.
- Flower D.R.
- Crooke S.N.
- Ovsyannikova I.G.
- Kennedy R.B.
- Poland G.A.
- Ong E.
- Wong M.U.
- Huffman A.
- He Y.
- Malone B.
- et al.
- Yang Z.
- Bogdan P.
- Nazarian S.
- Nielsen M.
- Lund O.
- Prachar M.
- et al.
Fast, E., Altman, R.B. & Chen, B. Potential T-cell and B-cell epitopes of 2019-nCoV. Biorxiv, 1–9 (2020). 10.1101/2020.02.19.955484.
5.2 Machine learning approaches to drug repurposing for COVID-19
- Che M.
- Yao K.
- Che C.
- Cao Z.
- Kong F.
5.3 Applying generative machine learning approaches for drug discovery
Kingma, D.P., Welling, M. Auto-encoding variational Bayes. arXiv, 2014; 1–14. doi: 10.48550/arXiv.1312.6114.
- Bjerrum E.
- Sattarov B.
6. Reflections and future perspectives
Kim, K.S. et al. A quantitative model used to compare within-host SARS-CoV-2, MERS-CoV, and SARS-CoV dynamics provides insights into the pathogenesis and treatment of SARS-CoV-2. PLOS Biology. 2021 19(3): e3001128. https://doi.org/10.1371/journal.pbio.3001128.
- Sego T.J.
- et al.
Getz, M. et al. Rapid community-driven development of a SARS-CoV-2 tissue simulator. Biorxiv, 2020.2004.2002.019075-012020.019004.019002.019075 (2020). 10.1101/2020.04.02.019075.
- Néant N.
- et al.
- Jenner A.L.
- et al.
- Korosec C.S.
- et al.
- Brunet-Ratnasingham E.
- et al.
Challenge | Future actions |
---|---|
Pace of emergence of longitudinal immunological data | Establish guidelines for data collection needed for modelling prior to epidemics/pandemics; establish translatable immunological models that can be rapidly adapted according to emerging data |
Modelling networks and model sharing not operational until after beginning of outbreak | Set up and maintain working groups between different stakeholders (funding agencies, researchers, clinicians, and public health authorities) for rapid mobilization |
Integrating immunological data with genetic information about variants and human hosts | Collect longitudinal viral sequencing data paired with clinical and immunological meta-data to leverage within-host genetic diversity to identify emerging variants |
Funding
CRediT authorship contribution statement
Data availability
- No data was used for the research described in the article.
Declaration of Competing Interest
References
- Epidemiological models and COVID-19: a comparative view.Hist Philos Life Sci. 2021; 43: 104https://doi.org/10.1007/s40656-021-00457-9
- Modeling the COVID-19 pandemic: a primer and overview of mathematical epidemiology.SeMA J. 2022; 79: 225-251https://doi.org/10.1007/s40324-021-00260-3
- A review of mathematical models of influenza A infections within a host or cell culture: lessons learned and challenges ahead.BMC Public Health. 2011; 11https://doi.org/10.1186/1471-2458-11-s1-s7
- Mathematical model reveals the role of memory CD8 T cell populations in recall responses to influenza.Front Immunol. 2016; 7https://doi.org/10.3389/fimmu.2016.00165
- Dynamically linking influenza virus infection kinetics, lung injury, inflammation, and disease severity.Elife. 2021; 10https://doi.org/10.7554/eLife.68864
- A dynamical model of human immune response to influenza A virus infection.J Theor Biol. 2007; 246: 70-86https://doi.org/10.1016/j.jtbi.2006.12.015
- Influenza A virus infection kinetics: quantitative data and models.Wiley Interdiscip Rev Syst Biol Med. 2011; 3: 429-445https://doi.org/10.1002/wsbm.129
- Modeling influenza virus infection: a roadmap for influenza research.Viruses. 2015; 7: 5274-5304https://doi.org/10.3390/v7102875
- Kinetics of influenza A virus infection in humans.J Virol. 2006; 80: 7590-7599
- Influenza virus infection model with density dependence supports biphasic viral decay.Front Microbiol. 2018; 9 (-1554): 1554
- Modeling influenza virus infection: a roadmap for influenza research.Viruses. 2015; 7: 5274-5304https://doi.org/10.3390/v7102875
- Modeling within-host dynamics of influenza virus infection including immune responses.PLoS Comput Biol. 2012; 8https://doi.org/10.1371/journal.pcbi.1002588
- A discrete epidemic model for SARS transmission and control in China.Math Comput Model. 2004; 40: 1491-1506https://doi.org/10.1016/j.mcm.2005.01.007
- A quantitative model used to compare within-host SARS-CoV-2, MERS-CoV, and SARS-CoV dynamics provides insights into the pathogenesis and treatment of SARS-CoV-2.PLoS Biol. 2021; 19https://doi.org/10.1371/journal.pbio.3001128
- Dynamical transmission model of MERS-CoV in two areas.AIP Conf Proc. 2016; 1716020010https://doi.org/10.1063/1.4942993
- Estimation of basic reproduction number of the Middle East respiratory syndrome coronavirus (MERS-CoV) during the outbreak in South Korea, 2015.Biomed Eng Online. 2017; 16https://doi.org/10.1186/s12938-017-0370-7
- Potency and timing of antiviral therapy as determinants of duration of SARS-CoV-2 shedding and intensity of inflammatory response.Sci Adv. 2020; 6 (-eabc7112): eabc7112https://doi.org/10.1126/sciadv.abc7112
- Pharmacokinetic basis of the hydroxychloroquine response in COVID-19: implications for therapy and prevention.Eur J Drug Metab Pharmacokinet. 2020; 45: 715-723https://doi.org/10.1007/s13318-020-00640-6
- Mathematical modeling of remdesivir to treat COVID-19: can dosing be optimized?.Pharmaceutics. 2021; 13https://doi.org/10.3390/pharmaceutics13081181
- In-host mathematical modelling of COVID-19 in humans.Annu Rev Control. 2020; 50: 448-456https://doi.org/10.1016/j.arcontrol.2020.09.006
- A quantitative model used to compare within-host SARS-CoV-2, MERS-CoV, and SARS-CoV dynamics provides insights into the pathogenesis and treatment of SARS-CoV-2.PLoS Biol. 2021; 19https://doi.org/10.1371/journal.pbio.3001128
- Characterization of SARS-CoV-2 dynamics in the host.Annu Rev Control. 2020; 50: 457-468https://doi.org/10.1016/j.arcontrol.2020.09.008
Kim, K.S. et al. A quantitative model used to compare within-host SARS-CoV-2, MERS-CoV, and SARS-CoV dynamics provides insights into the pathogenesis and treatment of SARS-CoV-2. PLOS Biology. 2021 19(3): e3001128. https://doi.org/10.1371/journal.pbio.3001128.
- Insight into treatment of HIV infection from viral dynamics models.Immunol Rev. 2018; 285: 9-25https://doi.org/10.1111/imr.12698
- Influence of delayed viral production on viral dynamics in HIV-1 infected patients.Math Biosci. 1998; 152: 143-163https://doi.org/10.1016/S0025-5564(98)10027-5
- Impact of intracellular delays and target-cell dynamics on in vivo viral infections.SIAM J Appl Math. 2010; 70: 2434-2448https://doi.org/10.1137/090779322
- Within-host infectious disease models accommodating cellular coinfection, with an application to influenza†.Virus Evol. 2019; 5https://doi.org/10.1093/ve/vez018
- Modeling SARS-CoV-2 viral kinetics and association with mortality in hospitalized patients from the French COVID cohort.Proc Natl Acad Sci. 2021; 118e2017962118https://doi.org/10.1073/pnas.2017962118
- SARS-CoV-2 shedding dynamics across the respiratory tract, sex, and disease severity for adult and pediatric COVID-19.Elife. 2021; 10https://doi.org/10.7554/eLife.70458
- In vivo kinetics of SARS-CoV-2 infection and its relationship with a person's infectiousness.Proc Natl Acad Sci. 2021; 118https://doi.org/10.1073/pnas.2111477118
- Virological assessment of hospitalized patients with COVID-2019.Nature. 2020; 581: 465-469https://doi.org/10.1038/s41586-020-2196-x
- Modeling the viral dynamics of SARS-CoV-2 infection.Math Biosci. 2020; 328108438https://doi.org/10.1016/j.mbs.2020.108438
- Infection, inflammation and intervention: mechanistic modelling of epithelial cells in COVID-19.J R Soc Interface. 2021; 1820200950https://doi.org/10.1098/rsif.2020.0950
- Type I and type III interferons – induction, signaling, evasion, and application to combat COVID-19.Cell Host Microbe. 2020; 27: 870-878https://doi.org/10.1016/j.chom.2020.05.008
- Type 1 interferons and the virus-host relationship: a lesson in détente.Science. 2006; 312: 879-882https://doi.org/10.1126/science.1125676
- Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells.Nature. 2001; 409: 1055-1060https://doi.org/10.1038/35059110
- Mathematical modeling explains differential SARS CoV-2 kinetics in lung and nasal passages in remdesivir treated rhesus macaques.bioRxiv. 2020;
- COVID-19 virtual patient cohort suggests immune mechanisms driving disease outcomes.PLoS Pathog. 2021; 17 (-e1009753)e1009753https://doi.org/10.1371/journal.ppat.1009753
- Modeling how antibody responses may determine the efficacy of COVID-19 vaccines.Nat Comput Sci. 2022; 2: 123-131https://doi.org/10.1038/s43588-022-00198-0
- In silico dynamics of COVID-19 phenotypes for optimizing clinical management.Proc Natl Acad Sci. 2021; 118e2021642118https://doi.org/10.1073/pnas.2021642118
- Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection.Science. 2021; 371https://doi.org/10.1126/science.abf4063
- Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells.Cell Rep Med. 2021; 2https://doi.org/10.1016/j.xcrm.2021.100354
- Rapid generation of durable B cell memory to SARS-CoV-2 spike and nucleocapsid proteins in COVID-19 and convalescence.Sci Immunol. 2020; 5https://doi.org/10.1126/sciimmunol.abf8891
- Analysis of host immunological response of adenovirus-based COVID-19 vaccines.Vaccines. 2021; 9 (Basel)-861: 861https://doi.org/10.3390/vaccines9080861
- Long-term durability of immune responses to the BNT162b2 and mRNA-1273 vaccines based on dosage, age and sex.Sci Rep. 2022; 1221232https://doi.org/10.1038/s41598-022-25134-0
- Modeling within-host SARS-CoV-2 infection dynamics and potential treatments.Viruses. 2021; 13https://doi.org/10.3390/v13061141
- Mathematical analysis of a within-host model of SARS-CoV-2.Adv Differ Equ. 2021; 2021https://doi.org/10.1186/s13662-021-03276-1
- Within host dynamics of SARS-CoV-2 in humans: modeling immune responses and antiviral treatments.SN Comput Sci. 2021; 2https://doi.org/10.1007/s42979-021-00919-8
- SARS-CoV-2 viral dynamics in non-human primates.PLoS Comput Biol. 2021; 17https://doi.org/10.1371/journal.pcbi.1008785
- SARS-CoV-2 coinfections: could influenza and the common cold be beneficial?.J Med Virol. 2020; 92: 2623-2630https://doi.org/10.1002/jmv.26098
- Within-host models of SARS-CoV-2: what can it teach us on the biological factors driving virus pathogenesis and transmission?.Anaesth Crit Care Pain Med. 2022; 41https://doi.org/10.1016/j.accpm.2022.101055
- A review of cell-based computational modeling in cancer biology.JCO Clin Cancer Inform. 2019; 2: 1-13https://doi.org/10.1200/cci.18.00069
- Multi-scale modeling of macrophage—T cell interactions within the tumor microenvironment.PLoS Comput Biol. 2020; 16https://doi.org/10.1371/journal.pcbi.1008519
- Agent-based computational modeling of glioblastoma predicts that stromal density is central to oncolytic virus efficacy.iScience. 2022; 25https://doi.org/10.1016/j.isci.2022.104395
- Drawing on different disciplines: macroeconomic agent-based models.J Evol Econ. 2018; 29: 39-66https://doi.org/10.1007/s00191-018-0557-5
Hoertel, N. et al. Facing the COVID-19 epidemic in NYC: a stochastic agent-based model of various intervention strategies. medRxiv: the preprint server for health sciences, 2020.2004.2023.20076885 (2020). 10.1101/2020.04.23.20076885.
- Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome sequencing and agent-based modeling.Nat Med. 2020; 26: 1398-1404https://doi.org/10.1038/s41591-020-1000-7
- Agent-based modelling for SARS-CoV-2 epidemic prediction and intervention assessment: a methodological appraisal.J Eval Clin Pract. 2020; 26: 1352-1360https://doi.org/10.1111/jep.13459
- COVID-19 and SARS-CoV-2. Modeling the present, looking at the future.Phys Rep. 2020; 869: 1-51https://doi.org/10.1016/j.physrep.2020.07.005
- Evaluation of COVID-19 vaccination strategies with a delayed second dose.PLoS Biol. 2021; 19https://doi.org/10.1371/journal.pbio.3001211
- Modelling scenarios of the epidemic of COVID-19 in Canada.Can Commun Dis Rep. 2020; 198-204https://doi.org/10.14745/ccdr.v46i06a08
- Hindsight is 2020 vision: a characterisation of the global response to the COVID-19 pandemic.BMC Public Health. 2020; 20https://doi.org/10.1186/s12889-020-09972-z
- Increased B cell selection stringency in germinal centers can explain improved COVID-19 vaccine efficacies with low dose prime or delayed boost.Front Immunol. 2021; 12https://doi.org/10.3389/fimmu.2021.776933
- A modular framework for multiscale, multicellular, spatiotemporal modeling of acute primary viral infection and immune response in epithelial tissues and its application to drug therapy timing and effectiveness.PLoS Comput Biol. 2020; https://doi.org/10.1101/2020.04.27.064139
- Multiscale model of antiviral timing, potency, and heterogeneity effects on an epithelial tissue patch infected by SARS-CoV-2.Viruses. 2022; 14https://doi.org/10.3390/v14030605
Getz, M. et al. Rapid community-driven development of a SARS-CoV-2 tissue simulator. Biorxiv, 2020.2004.2002.019075-012020.019004.019002.019075 (2020). 10.1101/2020.04.02.019075.
- Type I IFN immunoprofiling in COVID-19 patients.J Allergy Clin Immunol. 2020; 4-8https://doi.org/10.1016/j.jaci.2020.04.029
- COVID-19 Disease Map, a computational knowledge repository of SARS-CoV-2 virus-host interaction mechanisms.Mol Syst Biol. 2021; 17e10387
- Current and prospective computational approaches and challenges for developing COVID-19 vaccines.Adv Drug Deliv Rev. 2021; 172: 249-274https://doi.org/10.1016/j.addr.2021.02.004
- Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies.Viruses. 2020; 12https://doi.org/10.3390/v12030254
- A new coronavirus associated with human respiratory disease in China.Nature. 2020; 579: 265-269https://doi.org/10.1038/s41586-020-2008-3
- SARS-CoV-2 accessory proteins in viral pathogenesis: knowns and unknowns.Front Immunol. 2021; 12https://doi.org/10.3389/fimmu.2021.708264
- The population genetics and evolutionary epidemiology of RNA viruses.Nat Rev Microbiol. 2004; 2: 279-288https://doi.org/10.1038/nrmicro863
- From RNA world to SARS-CoV-2: the edited story of RNA viral evolution.Cells. 2021; 10https://doi.org/10.3390/cells10061557
- SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway.Nat Microbiol. 2022; 7: 1161-1179https://doi.org/10.1038/s41564-022-01143-7
- Emerging vaccine-breakthrough SARS-CoV-2 variants.ACS Infect Dis. 2022; 8: 546-556https://doi.org/10.1021/acsinfecdis.1c00557
- Phylogenetic supertree reveals detailed evolution of SARS-CoV-2.Sci Rep. 2020; 10https://doi.org/10.1038/s41598-020-79484-8
- A pneumonia outbreak associated with a new coronavirus of probable bat origin.Nature. 2020; 579: 270-273https://doi.org/10.1038/s41586-020-2012-7
- TreeTime: maximum-likelihood phylodynamic analysis.Virus Evol. 2018; 4https://doi.org/10.1093/ve/vex042
- Temporal signal and the phylodynamic threshold of SARS-CoV-2.Virus Evol. 2020; 6https://doi.org/10.1093/ve/veaa061
- Phylogenetic analysis of SARS-CoV-2 data is difficult.Mol Biol Evol. 2021; 38: 1777-1791https://doi.org/10.1093/molbev/msaa314
- Population genomics insights into the first wave of COVID-19.Life. 2021; 11https://doi.org/10.3390/life11020129
- Approximate bayesian computation in population genetics.Genetics. 2002; 162: 2025-2035https://doi.org/10.1093/genetics/162.4.2025
- Mutation rates and selection on synonymous mutations in SARS-CoV-2.Genome Biol Evol. 2021; 13https://doi.org/10.1093/gbe/evab087
Kim, K. et al. APOBEC-mediated editing of SARS-CoV-2 genomic RNA impacts viral replication and fitness. Biorxiv (2022). 10.1101/2021.12.18.473309.
- A founder effect led early SARS-CoV-2 transmission in Spain.J Virol. 2021; 95https://doi.org/10.1128/jvi.01583-20
- SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity.Nat Commun. 2020; 11https://doi.org/10.1038/s41467-020-19808-4
- Genomic reconstruction of the SARS-CoV-2 epidemic in England.Nature. 2021; 600: 506-511https://doi.org/10.1038/s41586-021-04069-y
- Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool.Virus Evol. 2021; https://doi.org/10.1093/ve/veab064
OliverPybus. Pango Lineage Nomenclature: provisional rules for naming recombinant lineages, <https://virological.org/t/pango-lineage-nomenclature-provisional-rules-for-naming-recombinant-lineages/657>(2021).
- Population genomics approaches for genetic characterization of SARS-CoV-2 lineages.Front Med. 2022; 9 (Lausanne)https://doi.org/10.3389/fmed.2022.826746
- Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.Genetics. 1989; 123: 585-595https://doi.org/10.1093/genetics/123.3.585
- Mathematical modelling of SARS-CoV-2 variant outbreaks reveals their probability of extinction.Sci Rep. 2021; 11https://doi.org/10.1038/s41598-021-04108-8
- Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity.Cell. 2021; 184 (e11): 64-75https://doi.org/10.1016/j.cell.2020.11.020
Zhan, X.Y. et al. Molecular evolution of SARS-CoV-2 structural genes: evidence of positive selection in spike glycoprotein. Biorxiv (2020). 10.1101/2020.06.25.170688.
- No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2.Nat Commun. 2020; 11https://doi.org/10.1038/s41467-020-19818-2
- SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo.Science. 2020; 370: 1464-1468https://doi.org/10.1126/science.abe8499
- Spike mutation D614G alters SARS-CoV-2 fitness.Nature. 2020; 592: 116-121https://doi.org/10.1038/s41586-020-2895-3
Mullen, J.L. et al. outbreak.info, <https://outbreak.info/>(2020).
- Recurrent SARS-CoV-2 mutations in immunodeficient patients.Virus Evolution. 2022; 8veac050https://doi.org/10.1093/ve/veac050
- Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans.Science. 2021; 371: 172-177https://doi.org/10.1126/science.abe5901
- Evidence for host-dependent RNA editing in the transcriptome of SARS-CoV-2.Sci Adv. 2020; 6https://doi.org/10.1126/sciadv.abb5813
- Multiple APOBEC3 restriction factors for HIV-1 and one Vif to rule them all.J Mol Biol. 2014; 426: 1220-1245https://doi.org/10.1016/j.jmb.2013.10.033
- VERSO: a comprehensive framework for the inference of robust phylogenies and the quantification of intra-host genomic diversity of viral samples.Patterns. 2021; 2https://doi.org/10.1016/j.patter.2021.100212
- Mutational signatures and heterogeneous host response revealed via large-scale characterization of SARS-CoV-2 genomic diversity.iScience. 2021; 24https://doi.org/10.1016/j.isci.2021.102116
- Spatio-temporal dynamics of intra-host variability in SARS-CoV-2 genomes.Nucleic Acids Res. 2022; 50: 1551-1561https://doi.org/10.1093/nar/gkab1297
- Mutational spectrum of SARS-CoV-2 during the global pandemic.Exp Mol Med. 2021; 53: 1229-1237https://doi.org/10.1038/s12276-021-00658-z
- Rampant C→U hypermutation in the genomes of SARS-CoV-2 and other coronaviruses: causes and consequences for their short- and long-term evolutionary trajectories.mSphere. 2020; 5https://doi.org/10.1128/mSphere.00408-20
- Genomic epidemiology of superspreading events in Austria reveals mutational dynamics and transmission properties of SARS-CoV-2.Sci Transl Med. 2020; 12https://doi.org/10.1126/scitranslmed.abe2555
- Comment on “Genomic epidemiology of superspreading events in Austria reveals mutational dynamics and transmission properties of SARS-CoV-2”.Sci Transl Med. 2021; 13https://doi.org/10.1126/scitranslmed.abh1803
- Genomewide association study of severe COVID-19 with respiratory failure.N Engl J Med. 2020; 383: 1522-1534https://doi.org/10.1056/NEJMoa2020283
- Mapping the human genetic architecture of COVID-19.Nature. 2021; 600: 472-477https://doi.org/10.1038/s41586-021-03767-x
- Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity.Nat Genet. 2021; 53: 801-808https://doi.org/10.1038/s41588-021-00854-7
- Associations between blood type and COVID-19 infection, intubation, and death.Nat Commun. 2020; 11https://doi.org/10.1038/s41467-020-19623-x
- Integrative approach identifies SLC6A20 and CXCR6 as putative causal genes for the COVID-19 GWAS signal in the 3p21.31 locus.Genome Biol. 2021; 22https://doi.org/10.1186/s13059-021-02454-4
- Association of CXCR6 with COVID-19 severity: delineating the host genetic factors in transcriptomic regulation.Hum Genet. 2021; 140: 1313-1328https://doi.org/10.1007/s00439-021-02305-z
- Elevated plasma levels of CXCL16 in severe COVID-19 patients.Cytokine. 2022; 152https://doi.org/10.1016/j.cyto.2022.155810
- Genome and epigenome editing identify CCR9 and SLC6A20 as target genes at the 3p21.31 locus associated with severe COVID-19.Signal Transduct Target Ther. 2021; 6https://doi.org/10.1038/s41392-021-00519-1
- The major genetic risk factor for severe COVID-19 is inherited from Neanderthals.Nature. 2020; 587: 610-612https://doi.org/10.1038/s41586-020-2818-3
- Genetic mechanisms of critical illness in COVID-19.Nature. 2020; 591: 92-98https://doi.org/10.1038/s41586-020-03065-y
- A genomic region associated with protection against severe COVID-19 is inherited from Neandertals.Proc Natl Acad Sci. 2021; 118https://doi.org/10.1073/pnas.2026309118
- Multi-ancestry fine mapping implicates OAS1 splicing in risk of severe COVID-19.Nat Genet. 2022; 54: 125-127https://doi.org/10.1038/s41588-021-00996-8
- Regulation of type I interferon responses.Nat Rev Immunol. 2013; 14: 36-49https://doi.org/10.1038/nri3581
- Loss-of-function mutations in IFNAR2 in COVID-19 severe infection susceptibility.J Glob Antimicrob Resist. 2021; 26: 239-240https://doi.org/10.1016/j.jgar.2021.06.005
- Assessing differential impacts of COVID-19 on black communities.Ann Epidemiol. 2020; 47: 37-44https://doi.org/10.1016/j.annepidem.2020.05.003
- Risk for COVID-19 infection and death among Latinos in the United States: examining heterogeneity in transmission dynamics.Ann Epidemiol. 2020; 52 (e42): 46-53https://doi.org/10.1016/j.annepidem.2020.07.007
- Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease.Nat Genet. 2022; https://doi.org/10.1038/s41588-021-01006-7
- A global effort to dissect the human genetic basis of resistance to SARS-CoV-2 infection.Nat Immunol. 2021; 23: 159-164https://doi.org/10.1038/s41590-021-01030-z
- FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data.Cytometry Part A. 2015; 87: 636-645https://doi.org/10.1002/cyto.a.22625
- Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis.Cell. 2015; 162: 184-197https://doi.org/10.1016/j.cell.2015.05.047
- Quantitative comparison of conventional and t-SNE-guided gating analyses.Front Immunol. 2019; 10https://doi.org/10.3389/fimmu.2019.01194
- Dimensionality reduction for visualizing single-cell data using UMAP.Nat Biotechnol. 2018; 37: 38-44https://doi.org/10.1038/nbt.4314
- Visualizing structure and transitions in high-dimensional biological data.Nat Biotechnol. 2019; 37: 1482-1492https://doi.org/10.1038/s41587-019-0336-3
- Multiscale PHATE identifies multimodal signatures of COVID-19.Nat Biotechnol. 2022; https://doi.org/10.1038/s41587-021-01186-x
- Identification of SARS-CoV-2-specific immune alterations in acutely ill patients.J Clin Invest. 2021; https://doi.org/10.1172/JCI145853
- FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data.Cytom A. 2015; 87: 636-645https://doi.org/10.1002/cyto.a.22625
- Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data.Cytom B: Clin Cytom. 2010; 78B: S69-S82https://do