Abstract
Graphical abstract

Keywords
Introduction
- Cameroni E.
- Bowen J.E.
- Rosen L.E.
- et al.
- Duan L.
- et al.
- Wang M.Y.
- et al.
- Liu L.
- Iketani S.
- Guo Y.
- et al.
Ancestral SARS-CoV-2-specific T cells cross-recognize Omicron (B.1.1.529).
- Patronov A.
- Doytchinova I.
- Vita R.
- Mahajan S.
- Overton J.A.
- Dhanda S.K.
- Martini S.
- Cantrell J.R.
- et al.
- Savsani K.
- Jabbour G.
- Dakshanamurthy S.
Materials and methods
Retrieval of SARS-CoV-2 sequence
CD8+ t cell epitope prediction and immunogenicity modeling
- Nielsen M.
- Lundegaard C.
- Blicher T.
- et al.
- Calis J.J.A.
- Maybeno M.
- Greenbaum J.A.
- et al.
CD4+ t cell epitope prediction
- Wang P.
- Sidney J.
- Kim Y.
- Sette A.
- Lund O.
- Nielsen M.
- et al.
- Wang P.
- Sidney J.
- Dow C.
- Mothé B.
- Sette A.
- Peters B.
IFNγ inducing CD4 peptide prediction
- Dhanda S.K.
- Vir P.
- Raghava G.P.S.
Antigenicity prediction
- Doytchinova I.A.
- Flower D.R.
Allergenicity prediction
- Dimitrov I.
- Bangov I.
- Flower D.R.
- Doytchinova I.
Toxicity prediction
- Gupta S.
- Kapoor P.
- Chaudhary K.
- et al.
Amino acid physiochemical properties
Worldwide human population coverage analysis
- Bui H.H.
- Sidney J.
- Dinh K.
- Southwood S.
- Newman M.J.
- Sette A.
Murine mhc restriction prediction
Validation using our population coverage optimization software
- Savsani K.
- Jabbour G.
- Dakshanamurthy S.
Three-dimensional (3D) structure prediction
Results
Workflow of t cell predictions
- Parn S.
- Jabbour G.
- Nguyenkhoa V.
- Dakshanamurthy S.
- Jabbour G.
- Rego S.
- Nguyenkhoa V.
- Dakshanamurthy S.

SARS-CoV-2 omicron variant mutations

CD8+ t cell epitope prediction
- Jabbour G.
- Rego S.
- Nguyenkhoa V.
- Dakshanamurthy S.
CD4+ t cell epitope prediction
- Jabbour G.
- Rego S.
- Nguyenkhoa V.
- Dakshanamurthy S.
Identification of overlapping t cell epitopes
Murine mhc restriction prediction
World Population Coverage | Omicron Specific CD8 Peptide | Targeted S Mutations | HLA Restriction | Mouse MHC Restriction | Omicron sub-lineage |
---|---|---|---|---|---|
76.16% | NLAPFFTFK | S371L, S373P, S375F | HLA-A*11:01, HLA-A*03:01, HLA-A*68:01 | Not Available | BA.1 |
YNLAPFFTF | S371L, S373P, S375F | HLA-A*23:01, HLA-A*24:02 | H2-Ld, H2-Db | BA.1 | |
GVYFASIEK | T95I | HLA-A*11:01, HLA-A*03:01, HLA-A*30:01 | Not Available | BA.1 | |
KSHRRARSV | N679K, P681H | HLA-A*30:01 | H2-Kd | BA.1, BA.2 | |
APFFTFKCY | S373P, S375F | HLA-B*35:01 | H2-Ld | BA.1 | |
VLYNLAPFF | S371L, S373P, S375F | HLA-A*32:01, HLA-A*23:01 | Not Available | BA.1 | |
REPEDLPQGF | ins214EPE | HLA-B*44:03, HLA-B*44:02 | H2-Db | BA.1 | |
RSYSFRPTY | Q493R, G496S, Q498R, N501Y | HLA-A*30:02, HLA-A*32:01, HLA-A*30:01, HLA-B*57:01, HLA-B*15:01, HLA-B*58:01, HLA-A*03:01, HLA-A*11:01 | Not Available | BA.1 |
Population coverage analysis
World Population Coverage | Omicron Specific CD4 Peptide | Targeted S mutations | HLA Restriction | Omicron sub-lineage |
---|---|---|---|---|
97.46% | FLPFFSNVTWFHVIS | A67V, del69–70 | HLA-DPA1*01:03, HLA-DPB1*04:01, HLA-DRB3*02:02, HLA-DPA1*01:03, HLA-DPB1*02:01 | BA.1 |
LPFFSNVTWFHVISG | A67V, del69–70 | HLA-DPA1*01:03, HLA-DPB1*04:01, HLA-DPA1*01:03, HLA-DPB1*02:01, HLA-DRB3*02:02 | BA.1 | |
TQLKRALTGIAVEQD | N764K | HLA-DPA1*02:01, HLA-DPB1*14:01, HLA-DQA1*03:01, HLA-DQB1*03:02, HLA-DQA1*04:01, HLA-DQB1*04:02 | BA.1, BA.2 | |
FCTQLKRALTGIAVE | N764K | HLA-DPA1*02:01, HLA-DPB1*14:01 | BA.1, BA.2 | |
SNLLLQYGSFCTQLK | N764K | HLA-DRB1*15:01 | BA.1, BA.2 | |
LKRALTGIAVEQDKN | N764K | HLA-DPA1*02:01, HLA-DPB1*14:01, HLA-DQA1*04:01, HLA-DQB1*04:02, HLA-DQA1*03:01, HLA-DQB1*03:02 | BA.1, BA.2 | |
GSFCTQLKRALTGIA | N764K | HLA-DRB1*11:01 | BA.1, BA.2 | |
YGSFCTQLKRALTGI | N764K | HLA-DRB1*11:01 | BA.1, BA.2 | |
KRALTGIAVEQDKNT | N764K | HLA-DQA1*03:01, HLA-DQB1*03:02 | BA.1, BA.2 | |
SVLYNLAPFFTFKCY | S371L, S373P, S375F | HLA-DPA1*01:03, HLA-DPB1*04:01, HLA-DPA1*01:03, HLA-DPB1*02:01 | BA.1 | |
VLYNLAPFFTFKCYG | S371L, S373P, S375F | HLA-DPA1*01:03, HLA-DPB1*04:01, HLA-DPA1*01:03, HLA-DPB1*02:01 | BA.1 |
World Population Coverage | Omicron Specific CD4 Peptide | Omicron Specific CD8 Peptide | Targeted S mutation | MHCII Restriction | Instability |
---|---|---|---|---|---|
92.66% | SVLYNLAPFFTFKCY | NLAPFFTFK YNLAPFFTF APFFTFKCY VLYNLAPFF | S371L, S373P, S375F | HLA-DPA1*01:03, HLA-DPB1*04:01, HLA-DPA1*01:03, HLA-DPB1*02:01 | Stable |
VLYNLAPFFTFKCYG | NLAPFFTFK YNLAPFFTF APFFTFKCY VLYNLAPFF | S371L, S373P, S375F | HLA-DPA1*01:03, HLA-DPB1*04:01, HLA-DPA1*01:03, HLA-DPB1*02:01 | Stable | |
KSHRRARSVASQSII | KSHRRARSV | N679K, P681H | HLA-DPA1*02:01, HLA-DPB1*14:01 | Unstable |
Validation of top epitopes
Peptide | HLA Restriction |
---|---|
SVYAWNRKR | HLA-A*31:01, HLA-A*33:01, HLA-A*68:01, HLA-A*03:01, HLA-A*11:01 |
VVFLHVTYV | HLA-A*02:03, HLA-A*02:06, HLA-A*68:02, HLA-A*02:01 |
AEIRASANL | HLA-B*40:01, HLA-B*44:03, HLA-B*44:02 |
RSYSFRPTY | HLA-A*30:02, HLA-A*32:01, HLA-A*30:01, HLA-B*57:01, HLA-B*15:01, HLA-B*58:01, HLA-A*03:01, HLA-A*11:01 |
YNLAPFFTF | HLA-A*23:01, HLA-A*24:02 |
QPTESIVRF | HLA-B*35:01, HLA-B*53:01, HLA-B*51:01, HLA-B*07:02 |
YLQPRTFLL | HLA-A*02:01, HLA-B*08:01, HLA-A*02:03, HLA-A*02:06, HLA-A*32:01 |
LTDEMIAQY | HLA-A*01:01, HLA-A*30:02, HLA-A*26:01, HLA-B*35:01 |

Three-dimensional (3D) structural analysis

Discussion
- Andrews N.
- et al.
- Health Individuals DF.Discovery
- Adhikari U.K.
- Tayebi M.
- Rahman M.M.
- Jabbour G.
- Rego S.
- Nguyenkhoa V.
- Dakshanamurthy S.

- Andreano E.
- et al.
- Xia X.

- Lin L.
- Ting S.
- Yufei H.
- Wendong L.
- Yubo F.
- Jing Z.
- Rakib A.
- Sami S.A.
- Mimi N.J.
- Chowdhury M.M.
- Eva T.A.
- Nainu F.
- Paul A.
- Shahriar A.
- Tareq A.M.
- Emon N.U.
- Chakraborty S.
- Shil S.
- Mily S.J.
- Ben Hadda T.
- Almalki F.A.
- Emran T.B.
- Jieping D.
- Junping P.
- Minghui Q.
- et al.
- Tarke A.
- Sidney J.
- Kidd C.K.
- Dan J.M.
- Ramirez S.I.
- Yu E.D.
- Mateus J.
- da Silva Antunes R.
- Moore E.
- Rubiro P.
- Methot N.
- Phillips E.
- Mallal S.
- Frazier A.
- Rawlings S.A.
- Greenbaum J.A.
- Peters B.
- Smith D.M.
- Crotty S.
- Weiskopf D.
- Grifoni A.
- Sette A
- Cao Y.
- Wang J.
- Jian F.
- Xiao T.
- Song W.
- Yisimayi A.
- Huang W.
- Li Q.
- Wang P.
- An R.
- Wang J.
- Wang Y.
- Niu X.
- Yang S.
- Liang H.
- Sun H.
- Li T.
- Yu Y.
- Cui Q.
- Liu S.
- Yang X.
- Du S.
- Zhang Z.
- Hao X.
- Shao F.
- Jin R.
- Wang X.
- Xiao J.
- Wang Y.
- Xie X.S
- Zhang Y.
- Huang K.
- Wang T.
- et al.
- Corbett K.S.
- Edwards D.K.
- Leist S.R.
- Abiona O.M.
- Boyoglu-Barnum S.
- Gillespie R.A.
- Himansu S.
- Schäfer A.
- Ziwawo C.T.
- DiPiazza A.T.
- Dinnon K.H.
- Elbashir S.M.
- Shaw C.A.
- Woods A.
- Fritch E.J.
- Martinez D.R.
- Bock K.W.
- Minai M.
- Nagata B.M.
- Hutchinson G.B.
- Wu K.
- Henry C.
- Bahl K.
- Garcia-Dominguez D.
- Ma L.
- Renzi I.
- Kong W.P.
- Schmidt S.D.
- Wang L.
- Zhang Y.
- Phung E.
- Chang L.A.
- Loomis R.J.
- Altaras N.E.
- Narayanan E.
- Metkar M.
- Presnyak V.
- Liu C.
- Louder M.K.
- Shi W.
- Leung K.
- Yang E.S.
- West A.
- Gully K.L.
- Stevens L.J.
- Wang N.
- Wrapp D.
- Doria-Rose N.A.
- Stewart-Jones G.
- Bennett H.
- Alvarado G.S.
- Nason M.C.
- Ruckwardt T.J.
- McLellan J.S.
- Denison M.R.
- Chappell J.D.
- Moore I.N.
- Morabito K.M.
- Mascola J.R.
- Baric R.S.
- Carfi A.
- Graham B.S
- Liang Z.
- Zhu H.
- Wang X.
- Jing B.
- Li Z.
- Xia X.
- et al.
- Dong R.
- Chu Z.
- Yu F.
- Zha Y.
Limitations of study
Conclusion
CRediT authorship contribution statement
Data Availability
- Data will be made available on request.
Declaration of Competing Interests
Acknowledgments
Appendix. Supplementary materials
References
- Classification of omicron (B.1.1.529): SARS-COV-2 variant of concern.World Health Organization. 2021;
- Centers for Disease Control and Prevention. 2021; (Accessed December 19, 2021)
- Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift.Nature. 2021; https://doi.org/10.1038/s41586-021-04386-2
- Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19.Acta Pharmacol Sin. 2020; 41: 1141-1149https://doi.org/10.1038/s41401-020-0485-4
- The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: implications for the design of spike-based vaccine immunogens.Front Immunol. 2020; https://doi.org/10.3389/fimmu.2020.576622
- SARS-CoV-2: structure, biology, and structure-based therapeutics development.Front Cell Infect Microbiol. 2020; https://doi.org/10.3389/fcimb.2020.587269
- Receptor-binding domain-specific human neutralizing monoclonal antibodies against SARS-CoV and SARS-CoV-2.Sig Transduct Target Ther. 2020; 5: 212https://doi.org/10.1038/s41392-020-00318-0
- Striking antibody evasion manifested by the omicron variant of SARS-CoV-2. 2021.Nature. 2022; https://doi.org/10.1038/s41586-021-04388-0
- Ancestral SARS-CoV-2-specific T cells cross-recognize Omicron (B.1.1.529).bioRxiv. 2022; https://doi.org/10.21203/rs.3.rs-1217466/v1
- T-cell epitope vaccine design by immunoinformatics.Open Biol. 2013; 120139https://doi.org/10.1098/rsob.120139
- Epitope-Based Immunome-Derived Vaccines: A Strategy for Improved Design and Safety.Clin Appl Immunomics. 2008; 2: 39-69https://doi.org/10.1007/978-0-387-79208-8_3
- Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection.Vaccine. 2016; 34: 2008-2014
- Convergent antibody responses to SARS-CoV-2 in convalescent individuals.Nature. 2020; 584: 437-442
- Definition of a human T cell epitope from influenza A non-structural protein 1 using HLA-A2.1 transgenic mice.Int Immunol. 1995; 7: 597-605https://doi.org/10.1093/intimm/7.4.597
- CTL responses of HLA-A2.1-transgenic mice specific for hepatitis C viral peptides predict epitopes for CTL of humans carrying HLA-A2.1.J immunol (Baltimore, Md.: 1950). 1995; 154: 2733-2742
- The Immune Epitope Database (IEDB): 2018 update.Nucleic Acids Res. 2018; https://doi.org/10.1093/nar/gky1006
- A new epitope selection method: application to design a multi-valent epitope vaccine targeting hras oncogene in squamous cell carcinoma.Vaccines. 2022; 1063https://doi.org/10.3390/vaccines10010063
Hodcroft, E. Variant: 21 K (Omicron). CoVariants. Accessed January 13, 2022.
BA.2 mutations: SARS-CoV-2 variants of concern and variants under investigation in England. Technical briefing 31. UK Health Security Agency. 2021. Accessed January 25, 2022.
- NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence.PLoS One. 2007; 2e796https://doi.org/10.1371/journal.pone.0000796
- NetMHCpan, a method for MHC class I binding prediction beyond humans.Immunogenetics. 2009; 61: 1-13https://doi.org/10.1007/s00251-008-0341-z
- NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets.Genome Med. 2016; 8: 33https://doi.org/10.1186/s13073-016-0288-x
- NetMHCpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data.J Immunol. 2017; 199: 3360-3368https://doi.org/10.4049/jimmunol.1700893
- NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data.Nucleic Acids Res. 2020; 48: W449-W454https://doi.org/10.1093/nar/gkaa379
- Properties of MHC class I presented peptides that enhance immunogenicity.PLoS Comput Biol. 2013; 9https://doi.org/10.1371/journal.pcbi.1003266
- Peptide binding predictions for HLA DR, DP and DQ molecules.BMC Bioinformatics. 2020; 11568https://doi.org/10.1186/1471-2105-11-568
- A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach.PLoS Comput Biol. 2008; 4e1000048https://doi.org/10.1371/journal.pcbi.1000048
- Designing of Interferon-Gamma Inducing MHC Class-II Binders.Biol Direct. 2013; 830https://doi.org/10.1186/1745-6150-8-30
- VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines.BMC Bioinformatics. 2007; 84https://doi.org/10.1186/1471-2105-8-4
- AllerTOP v.2- a server for in silico prediction of allergens.J Mol Model. 2014; 202278https://doi.org/10.1007/s00894-014-2278-5
- Silico Approach for Predicting Toxicity of Peptides and Proteins.PLoS ONE. 2013; 8e73957https://doi.org/10.1371/journal.pone.0073957
Gasteiger E., Hoogland C., Gattiker A., et al. Protein identification and analysis tools on the ExPASy server. In: John M. Walker, ed. The proteomics protocols handbook, Humana Press; 2005:571–607.
- Predicting population coverage of T-cell epitope-based diagnostics and vaccines.BMC Bioinformatics. 2006; 17153https://doi.org/10.1186/1471-2105-7-153
- SYFPEITHI: database for MHC ligands and peptide motifs.Immunogenetics. 1999; 50: 213-219https://doi.org/10.1007/s002510050595
- Quantification of epitope abundance reveals the effect of direct and cross-presentation on influenza CTL responses.Nat Commun. 2019; 10: 2846https://doi.org/10.1038/s41467-019-10661-8
- Identification of the H2-Kd-restricted cytotoxic T lymphocyte epitopes of a tumor-associated antigen, SPARC, which can stimulate antitumor immunity without causing autoimmune disease in mice.Cancer Sci. 2009; 100: 132-137https://doi.org/10.1111/j.1349-7006.2008.01016.x
- Analysis of cytotoxic T cell responses to dominant and subdominant epitopes during acute and chronic lymphocytic choriomeningitis virus infection.J Immunol. 1996; 157: 5543-5554
- PEPstr: A de novo method for tertiary structure prediction of small bioactive peptides.Protein Pept Lett. 2007; 14: 626-631https://doi.org/10.2174/092986607781483859
- Schueler-Furman O. Rosetta FlexPepDock web server–high resolution modeling of peptide-protein interactions.Nucleic Acids Res. 2011; 39: 249https://doi.org/10.1093/nar/gkr431
- The HADDOCK2.2 webserver: User-friendly integrative modeling of biomolecular complexes.J Mol Biol. 2016; 428: 720-725
- TCRmodel: high resolution modeling of T cell receptors from sequence.Nucleic Acids Res. 2018; 46: W396-W401https://doi.org/10.1093/nar/gky432
- Design of Peptide Vaccine for COVID-19: CD8+ and CD4+ T cell epitopes from SARS-CoV-2 open-reading-frame protein variants.bioRxiv. 2021; 461301https://doi.org/10.1101/2021.09.21.461301
- Design of T cell epitope-based vaccine candidate for SARS-CoV-2 targeting spike and nucleocapsid protein escape variants.bioRxiv. 2021; 459907https://doi.org/10.1101/2021.09.11.459907
- Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera.Cell. 2021; 189: 2348-2361https://doi.org/10.1016/j.cell.2021.02.037
- mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants.Nature. 2021; 592: 616-622https://doi.org/10.1038/s41586-021-03324-6
Shah M., Woo H.G. Omicron: A heavily mutated SARS-CoV-2 variant exhibits stronger binding to ACE2 and potently escape approved COVID-19 therapeutic antibodies. bioRxiv 2021.12.04.471200. Accessed January 10, 2022. Doi: 10.1101/2021.12.04.471200.
- Effectiveness of COVID-19 vaccines against the Omicron (B.1.1.529) variant of concern.medRxiv. 2021; https://doi.org/10.1101/2021.12.14.21267615
- South Africa's largest private health insurance administrator, releases at-scale, real-world analysis of Omicron outbreak based on 211 000 COVID-19 test results in South Africa, including collaboration with the South Africa.New York: Discovery Ltd. 2021; (Accessed on January 11, 2022)
- Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine through 6 Months.N Engl J Med. 2021; 385: 1761-1773https://doi.org/10.1056/NEJMoa2110345
- Immunoinformatics Approach for Epitope-Based Peptide Vaccine Design and Active Site Prediction against Polyprotein of Emerging Oropouche Virus.J Immunol Res. 2018; 20186718083https://doi.org/10.1155/2018/6718083
Lupala C.S., Ye Y., Chen H., Su X.D., Liu H. Mutations in RBD of SARS-CoV-2 Omicron variant result stronger binding to human ACE2 protein. bioRxiv. 2021.12.10.472102. Accessed January 9, 2022. Doi: 10.1101/2021.12.10.472102.
- SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma.PNAS. 2021; 118https://doi.org/10.1073/pnas.2103154118
Venkatakrishnan A.J., Anand P., Lenehan P., Suratekar R., Raghunathan B., Niesen M.J. and Soundararajan V. Omicron variant of SARS-CoV-2 harbors a unique insertion mutation of putative viral or human genomic origin. 2021. Preprint. Accessed on January 5, 2022. Doi: 10.31219/osf.io/f7txy.
- Domains and Functions of Spike Protein in Sars-Cov-2 in the Context of Vaccine Design.Viruses. 2021; 13109https://doi.org/10.3390/v13010109
- Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV.J Med Virol. 2020; 92: 495-500https://doi.org/10.1002/jmv.25698
- A Sequence Homology and Bioinformatic Approach Can Predict Candidate Targets for Immune Responses to SARS-CoV-2.Cell Host Microbe. 2020 Apr 8; 27: 671-680https://doi.org/10.1016/j.chom.2020.03.002
- Epitope-based peptide vaccines predicted against novel coronavirus disease caused by SARS-CoV-2.Virus Res. 2020 Oct 15; 288198082https://doi.org/10.1016/j.virusres.2020.198082
- Epitope based peptide vaccine against SARS-COV2: an immune-informatics approach.J Biomol Struct Dyn. 2021 Sep; 39: 5690-5705https://doi.org/10.1080/07391102.2020.1787227
- Immunoinformatics-guided design of an epitope-based vaccine against severe acute respiratory syndrome coronavirus 2 spike glycoprotein.Comput Biol Med. 2020 Sep; 124103967https://doi.org/10.1016/j.compbiomed.2020.103967
- Identification of HLA-A2 restricted CD8+ T cell epitopes in SARS-CoV-2 structural proteins.J Leukocyte Biol. 2021; 110https://doi.org/10.1002/JLB.4MA0621-020R
- Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases.Cell Rep Med. 2021 Feb 16; 2100204https://doi.org/10.1016/j.xcrm.2021.100204
- T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all individuals.Cell. 2022; 185: 1041-1051https://doi.org/10.1016/j.cell.2022.01.029
- Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies.Nature. 2022 Feb; 602: 657-663https://doi.org/10.1038/s41586-021-04385-3
- SARS-CoV-2 Rapidly Adapts in Aged BALB/c Mice and Induces Typical Pneumonia.J Virol. 2021; 95https://doi.org/10.1128/JVI.02477-20
- SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness.Nature. 2020 Oct; 586: 567-571https://doi.org/10.1038/s41586-020-2622-0
- Adjuvants for coronavirus vaccines.Front Immunol. 2020; 11589833https://doi.org/10.3389/fimmu.2020.589833
- Contriving multi-epitope subunit of vaccine for COVID-19: immunoinformatics approaches.Front Immunol. 2020; 111784https://doi.org/10.3389/fimmu.2020.01784
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy