Abstract
Graphical Abstract

Keywords
1. Introduction
- Rubelt F.
- Busse C.E.
- Bukhari S.A.C.
- Bürckert J.-P.
- Mariotti-Ferrandiz E.
- Cowell L.G.
- Watson C.T.
- Marthandan N.
- Faison W.J.
- Hershberg U.
- Laserson U.
- Corrie B.D.
- Davis M.M.
- Peters B.
- Lefranc M.-P.
- Scott J.K.
- Breden F.
- Luning Prak E.T.
- Kleinstein S.H.
- Barennes P.
- Quiniou V.
- Shugay M.
- Egorov E.S.
- Davydov A.N.
- Chudakov D.M.
- Uddin I.
- Ismail M.
- Oakes T.
- Chain B.
- Eugster A.
- Kashofer K.
- Rainer P.P.
- Darko S.
- Ransier A.
- Douek D.C.
- Klatzmann D.
- Mariotti-Ferrandiz E.
- Song L.
- Cohen D.
- Ouyang Z.
- Cao Y.
- Hu X.
- Liu X.S.
- Song L.
- Cohen D.
- Ouyang Z.
- Cao Y.
- Hu X.
- Liu X.S.
- Upadhyay A.A.
- Kauffman R.C.
- Wolabaugh A.N.
- Cho A.
- Patel N.B.
- Reiss S.M.
- Havenar-Daughton C.
- Dawoud R.A.
- Tharp G.K.
- Sanz I.
- Pulendran B.
- Crotty S.
- Lee F.E.-H.
- Wrammert J.
- Bosinger S.E.
- Garrett M.E.
- Galloway J.G.
- Wolf C.
- Logue J.K.
- Franko N.
- Chu H.Y.
- Matsen F.A.
- Overbaugh J.
J.G. Galloway, E. Matsen, phip-flow, Matsen Group, 2022. https://github.com/matsengrp/phip-flow (Accessed 9 February 2022).
- Cabrera-Pastor A.
- Llansola M.
- Montoliu C.
- Malaguarnera M.
- Balzano T.
- Taoro-Gonzalez L.
- García-García R.
- Mangas-Losada A.
- Izquierdo-Altarejos P.
- Arenas Y.M.
- Leone P.
- Felipo V.
2. Material and Methods
2.1 Patient recruitment
2.2 RNA sequencing experimental design
2.3 Read trimming and filtering
2.4 Repertoire reconstruction
2.5 Hill-based evenness profiles
where is the number of unique clones in a repertoire, is the frequency distribution (proportional abundance of clones) and ⍺ is a scale parameter in (0,1) and (1, +∞).
where is the evenness and is the species richness or the number of unique clones in a repertoire dataset.
2.6 Shannon Evenness
2.7 Jaccard similarity
2.8 K-mer-based TCR analysis
2.9 TCR sequence similarity architecture
- Amoriello R.
- Chernigovskaya M.
- Greiff V.
- Carnasciali A.
- Massacesi L.
- Barilaro A.
- Repice A.M.
- Biagioli T.
- Aldinucci A.
- Muraro P.A.
- Laplaud D.A.
- Lossius A.
- Ballerini C.
2.10 Graphics generation
A. Kassambara, ggpubr: “ggplot2” Based Publication Ready Plots. R package version 0.4.0., (2020). https://CRAN.R-project.org/package=ggpubr.
2.11 Antigen/Disease-specific TCR databases
- Bagaev D.V.
- Vroomans R.M.A.
- Samir J.
- Stervbo U.
- Rius C.
- Dolton G.
- Greenshields-Watson A.
- Attaf M.
- Egorov E.S.
- Zvyagin I.V.
- Babel N.
- Cole D.K.
- Godkin A.J.
- Sewell A.K.
- Kesmir C.
- Chudakov D.M.
- Luciani F.
- Shugay M.
2.12 Fisher's exact test analysis
- Amoriello R.
- Chernigovskaya M.
- Greiff V.
- Carnasciali A.
- Massacesi L.
- Barilaro A.
- Repice A.M.
- Biagioli T.
- Aldinucci A.
- Muraro P.A.
- Laplaud D.A.
- Lossius A.
- Ballerini C.
2.13 Nextflow pipeline
2.14 Data and code availability
3. Results and Discussion
3.1 Step-by-step analysis overview
- Song L.
- Cohen D.
- Ouyang Z.
- Cao Y.
- Hu X.
- Liu X.S.

3.2 T-cell receptor sequences can be recovered from RNA-seq data (steps 1–5)
- Rybakin V.
- Westernberg L.
- Fu G.
- Kim H.O.
- Ampudia J.
- Sauer K.
- Gascoigne N.R.J.
3.3 TCR sequences profiling in MHE
3.3.1 Low clonal convergence among patient samples (step 6a)

3.3.2 High clonal expansion in all samples independently of immune status (step 6b)
3.3.3 Increased within-repertoire similarity based on repertoire architecture is unconstrained by immune status (steps 6c-d)
3.4 TCRs with known disease association are overrepresented in MHE CDR3 repertoires (step 6e)
- Amoriello R.
- Chernigovskaya M.
- Greiff V.
- Carnasciali A.
- Massacesi L.
- Barilaro A.
- Repice A.M.
- Biagioli T.
- Aldinucci A.
- Muraro P.A.
- Laplaud D.A.
- Lossius A.
- Ballerini C.
McPAS-TCR | |||
---|---|---|---|
Disease association | control | withoutMHE | withMHE |
Celiac disease | 0.011* | 0.214 | <0.001** |
Cytomegalovirus (CMV) | 1 | 1 | 0.723 |
Diabetes Type 1 | 1 | 1 | 0.510 |
Epstein Barr virus (EBV) | 1 | 0.510 | 1 |
HTLV-1 | 1 | 0.877 | 0.823 |
Inflammatory bowel disease (IBD) | 1 | <0.001** | 0.001** |
Influenza | 0.510 | 0.510 | 0.066 |
Narcolepsy | 0.723 | 1 | 1 |
Psoriatic Arthritis | 0.064 | 1 | 1 |
Ulcerative Colitis | 1 | 0.066 | 1 |
Yellow fever virus | 1 | 0.723 | 1 |
4. Conclusion
- Amoriello R.
- Chernigovskaya M.
- Greiff V.
- Carnasciali A.
- Massacesi L.
- Barilaro A.
- Repice A.M.
- Biagioli T.
- Aldinucci A.
- Muraro P.A.
- Laplaud D.A.
- Lossius A.
- Ballerini C.
- Weber C.R.
- Rubio T.
- Wang L.
- Zhang W.
- Robert P.A.
- Akbar R.
- Snapkov I.
- Wu J.
- Kuijjer M.L.
- Tarazona S.
- Conesa A.
- Sandve G.K.
- Liu X.
- Reddy S.T.
- Greiff V.
- Pavlović M.
- Scheffer L.
- Motwani K.
- Kanduri C.
- Kompova R.
- Vazov N.
- Waagan K.
- Bernal F.L.M.
- Costa A.A.
- Corrie B.
- Akbar R.
- Al Hajj G.S.
- Balaban G.
- Brusko T.M.
- Chernigovskaya M.
- Christley S.
- Cowell L.G.
- Frank R.
- Grytten I.
- Gundersen S.
- Haff I.H.
- Hovig E.
- Hsieh P.-H.
- Klambauer G.
- Kuijjer M.L.
- Lund-Andersen C.
- Martini A.
- Minotto T.
- Pensar J.
- Rand K.
- Riccardi E.
- Robert P.A.
- Rocha A.
- Slabodkin A.
- Snapkov I.
- Sollid L.M.
- Titov D.
- Weber C.R.
- Widrich M.
- Yaari G.
- Greiff V.
- Sandve G.K.
- Weber C.R.
- Rubio T.
- Wang L.
- Zhang W.
- Robert P.A.
- Akbar R.
- Snapkov I.
- Wu J.
- Kuijjer M.L.
- Tarazona S.
- Conesa A.
- Sandve G.K.
- Liu X.
- Reddy S.T.
- Greiff V.
- Francis J.M.
- Leistritz-Edwards D.
- Dunn A.
- Tarr C.
- Lehman J.
- Dempsey C.
- Hamel A.
- Rayon V.
- Liu G.
- Wang Y.
- Wille M.
- Durkin M.
- Hadley K.
- Sheena A.
- Roscoe B.
- Ng M.
- Rockwell G.
- Manto M.
- Gienger E.
- Nickerson J.
- Moarefi A.
- Noble M.
- Malia T.
- Bardwell P.D.
- Gordon W.
- Swain J.
- Skoberne M.
- Sauer K.
- Harris T.
- Goldrath A.W.
- Shalek A.K.
- Coyle A.J.
- Benoist C.
- Pregibon D.C.
- Jilg N.
- Li J.
- Rosenthal A.
- Wong C.
- Daley G.
- Golan D.
- Heller H.
- Sharpe A.
- Abayneh B.A.
- Allen P.
- Antille D.
- Armstrong K.
- Boyce S.
- Braley J.
- Branch K.
- Broderick K.
- Carney J.
- Chan A.
- Davidson S.
- Dougan M.
- Drew D.
- Elliman A.
- Flaherty K.
- Flannery J.
- Forde P.
- Gettings E.
- Griffin A.
- Grimmel S.
- Grinke K.
- Hall K.
- Healy M.
- Henault D.
- Holland G.
- Kayitesi C.
- LaValle V.
- Lu Y.
- Luthern S.
- Schneider J.M.
- Martino B.
- McNamara R.
- Nambu C.
- Nelson S.
- Noone M.
- Ommerborn C.
- Pacheco L.C.
- Phan N.
- Porto F.A.
- Ryan E.
- Selleck K.
- Slaughenhaupt S.
- Sheppard K.S.
- Suschana E.
- Wilson V.
- Carrington M.
- Martin M.
- Yuki Y.
- Alter G.
- Balazs A.
- Bals J.
- Barbash M.
- Bartsch Y.
- Boucau J.
- Carrington M.
- Chevalier J.
- Chowdhury F.
- DeMers E.
- Einkauf K.
- Fallon J.
- Fedirko L.
- Finn K.
- Garcia-Broncano P.
- Ghebremichael M.S.
- Hartana C.
- Jiang C.
- Judge K.
- Kaplonek P.
- Karpell M.
- Lai P.
- Lam E.C.
- Lefteri K.
- Lian X.
- Lichterfeld M.
- Lingwood D.
- Liu H.
- Liu J.
- Ly N.
- Hill Z.M.
- Michell A.
- Millstrom I.
- Miranda N.
- O'Callaghan C.
- Osborn M.
- Pillai S.
- Rassadkina Y.
- Reissis A.
- Ruzicka F.
- Seiger K.
- Sessa L.
- Sharr C.
- Shin S.
- Singh N.
- Sun W.
- Sun X.
- Ticheli H.
- Trocha-Piechocka A.
- Walker B.
- Worrall D.
- Yu X.G.
- Zhu A.
Allelic variation in class I HLA determines CD8+ T cell repertoire shape and cross-reactive memory responses to SARS-CoV-2.
- Barennes P.
- Quiniou V.
- Shugay M.
- Egorov E.S.
- Davydov A.N.
- Chudakov D.M.
- Uddin I.
- Ismail M.
- Oakes T.
- Chain B.
- Eugster A.
- Kashofer K.
- Rainer P.P.
- Darko S.
- Ransier A.
- Douek D.C.
- Klatzmann D.
- Mariotti-Ferrandiz E.
- Weber C.R.
- Rubio T.
- Wang L.
- Zhang W.
- Robert P.A.
- Akbar R.
- Snapkov I.
- Wu J.
- Kuijjer M.L.
- Tarazona S.
- Conesa A.
- Sandve G.K.
- Liu X.
- Reddy S.T.
- Greiff V.
Declaration of Competing Interest
Author contributions
Funding
Appendix. Supplementary materials
References
Y. Elhanati, A. Murugan, C.G. Callan, T. Mora, A.M. Walczak, Quantifying selection in immune receptor repertoires, Proc. Natl. Acad. Sci. 111 (2014) 9875–9880. https://doi.org/10.1073/pnas.1409572111.
A. Murugan, T. Mora, A.M. Walczak, C.G. Callan, Statistical inference of the generation probability of T-cell receptors from sequence repertoires, Proc. Natl. Acad. Sci. 109 (2012) 16161–16166. https://doi.org/10.1073/pnas.1212755109.
- Comprehensive assessment of T-cell receptor β-chain diversity in αβ T cells.Blood. 2009; 114: 4099-4107https://doi.org/10.1182/blood-2009-04-217604
- T-cell antigen receptor genes and T-cell recognition.Nature. 1988; 334: 395-402https://doi.org/10.1038/334395a0
- Augmenting adaptive immunity: progress and challenges in the quantitative engineering and analysis of adaptive immune receptor repertoires.Mol. Syst. Des. Eng. 2019; 4: 701-736https://doi.org/10.1039/C9ME00071B
- Overview of methodologies for T-cell receptor repertoire analysis.BMC Biotechnol. 2017; 17: 61https://doi.org/10.1186/s12896-017-0379-9
- Adaptive Immune Receptor Repertoire Community recommendations for sharing immune-repertoire sequencing data.Nat. Immunol. 2017; 18: 1274-1278https://doi.org/10.1038/ni.3873
- Benchmarking of T cell receptor repertoire profiling methods reveals large systematic biases.Nat. Biotechnol. 2021; 39: 236-245https://doi.org/10.1038/s41587-020-0656-3
- Bioinformatic and Statistical Analysis of Adaptive Immune Repertoires.Trends Immunol. 2015; 36: 738-749https://doi.org/10.1016/j.it.2015.09.006
- Antigen receptor repertoire profiling from RNA-seq data.Nat. Biotechnol. 2017; 35: 908-911https://doi.org/10.1038/nbt.3979
- RNA sequencing identifies clonal structure of T-cell repertoires in patients with adult T-cell leukemia/lymphoma.Npj Genomic Med. 2019; 4: 1-9https://doi.org/10.1038/s41525-019-0084-9
- TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data.Nat. Methods. 2021; https://doi.org/10.1038/s41592-021-01142-2
- An ultra-sensitive T-cell receptor detection method for TCR-Seq and RNA-Seq data.Bioinforma. Oxf. Engl. 2020; 36: 4255-4262https://doi.org/10.1093/bioinformatics/btaa432
- BASIC: BCR assembly from single cells.Bioinforma. Oxf. Engl. 2017; 33: 425-427https://doi.org/10.1093/bioinformatics/btw631
- BraCeR: B-cell-receptor reconstruction and clonality inference from single-cell RNA-seq.Nat. Methods. 2018; 15: 563-565https://doi.org/10.1038/s41592-018-0082-3
- BALDR: a computational pipeline for paired heavy and light chain immunoglobulin reconstruction in single-cell RNA-seq data.Genome Med. 2018; 10: 20https://doi.org/10.1186/s13073-018-0528-3
- Nextflow enables reproducible computational workflows.Nat. Biotechnol. 2017; 35: 316-319https://doi.org/10.1038/nbt.3820
- The nf-core framework for community-curated bioinformatics pipelines.Nat. Biotechnol. 2020; 38: 276-278https://doi.org/10.1038/s41587-020-0439-x
- Comprehensive characterization of the antibody responses to SARS-CoV-2 Spike protein after infection and/or vaccination.BioRxiv. 2021; https://doi.org/10.1101/2021.10.05.463210
J.G. Galloway, E. Matsen, phip-flow, Matsen Group, 2022. https://github.com/matsengrp/phip-flow (Accessed 9 February 2022).
- Attention, Memory, and Cognitive Function in Hepatic Encephalopathy.Metab. Brain Dis. 2005; 20: 359-367https://doi.org/10.1007/s11011-005-7919-z
- Peripheral inflammation induces neuroinflammation that alters neurotransmission and cognitive and motor function in hepatic encephalopathy: Underlying mechanisms and therapeutic implications.Acta Physiol. 2019; 226: e13270https://doi.org/10.1111/apha.13270
- Minimal hepatic encephalopathy is associated with expansion and activation of CD4+CD28-, Th22 and Tfh and B lymphocytes.Sci. Rep. 2017; 7: 6683https://doi.org/10.1038/s41598-017-05938-1
- Neuropsychological characterization of hepatic encephalopathy.J. Hepatol. 2001; 34: 768-773https://doi.org/10.1016/S0168-8278(01)00026-5
- a flexible trimmer for Illumina sequence data.Bioinforma. Oxf. Engl. 2014; 30: 2114-2120https://doi.org/10.1093/bioinformatics/btu170
- MiXCR: software for comprehensive adaptive immunity profiling.Nat. Methods. 2015; 12: 380-381https://doi.org/10.1038/nmeth.3364
- The TCR Repertoire Reconstitution in Multiple Sclerosis: Comparing One-Shot and Continuous Immunosuppressive Therapies.Front. Immunol. 2020; 11: 559https://doi.org/10.3389/fimmu.2020.00559
- A bioinformatic framework for immune repertoire diversity profiling enables detection of immunological status.Genome Med. 2015; 7: 49https://doi.org/10.1186/s13073-015-0169-8
ImmunoMind Team, immunarch: An R Package for Painless Analysis of Large-Scale Immune Repertoire Data, (2019).
- TCR repertoire diversity in Multiple Sclerosis: High-dimensional bioinformatics analysis of sequences from brain, cerebrospinal fluid and peripheral blood.EBioMedicine. 2021; 68103429https://doi.org/10.1016/j.ebiom.2021.103429
- Large-scale network analysis reveals the sequence space architecture of antibody repertoires.Nat. Commun. 2019; 10: 1321https://doi.org/10.1038/s41467-019-09278-8
- The igraph software package for complex network research.InterJ Complex Syst. 2006; 1695: 9
- A flexible R package for nonnegative matrix factorization.BMC Bioinformatics. 2010; 11: 367https://doi.org/10.1186/1471-2105-11-367
S. Andrews, FASTQC. A quality control tool for high throughput sequence data, 2010.
A. Kassambara, ggpubr: “ggplot2” Based Publication Ready Plots. R package version 0.4.0., (2020). https://CRAN.R-project.org/package=ggpubr.
- McPAS-TCR: a manually curated catalogue of pathology-associated T cell receptor sequences.Bioinforma. Oxf. Engl. 2017; 33: 2924-2929https://doi.org/10.1093/bioinformatics/btx286
- VDJdb in 2019: database extension, new analysis infrastructure and a T-cell receptor motif compendium.Nucleic Acids Res. 2020; 48: D1057-D1062https://doi.org/10.1093/nar/gkz874
- IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes.Nucleic Acids Res. 2005; 33: D256-D261https://doi.org/10.1093/nar/gki010
- Allelic exclusion of TCR α-chains upon severe restriction of Vα repertoire.PloS One. 2014; 9e114320https://doi.org/10.1371/journal.pone.0114320
- Posttranscriptional silencing of VbetaDJbetaCbeta genes contributes to TCRbeta allelic exclusion in mammalian lymphocytes.J. Immunol. Baltim. Md. 2010; 185: 1055-1062https://doi.org/10.4049/jimmunol.0903099
- Predicting the spectrum of TCR repertoire sharing with a data-driven model of recombination.Immunol. Rev. 2018; 284: 167-179https://doi.org/10.1111/imr.12665
- Systems Analysis Reveals High Genetic and Antigen-Driven Predetermination of Antibody Repertoires throughout B Cell Development.Cell Rep. 2017; 19: 1467-1478https://doi.org/10.1016/j.celrep.2017.04.054
- Learning the High-Dimensional Immunogenomic Features That Predict Public and Private Antibody Repertoires.J. Immunol. 2017; 199: 2985-2997https://doi.org/10.4049/jimmunol.1700594
- Mother and Child T Cell Receptor Repertoires: Deep Profiling Study.Front. Immunol. 2013; 4: 463https://doi.org/10.3389/fimmu.2013.00463
- Crohn's disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn's disease.Gut. 2009; 58: 1152-1167https://doi.org/10.1136/gut.2008.163667
- Clinical significance of granuloma in Crohn's disease.World J. Gastroenterol. WJG. 2005; 11: 3118-3121https://doi.org/10.3748/wjg.v11.i20.3118
- Crohn's Disease and Ulcerative Colitis Show Unique Cytokine Profiles.Cureus. 2017; 9: e1177https://doi.org/10.7759/cureus.1177
- Effector T Helper Cell Subsets in Inflammatory Bowel Diseases.Front. Immunol. 2018; 9: 1212https://doi.org/10.3389/fimmu.2018.01212
- The Possible Pathogenic Role of IgG4-Producing Plasmablasts in Stricturing Crohn's Disease.Pathobiol. J. Immunopathol. Mol. Cell. Biol. 2022; : 1-11https://doi.org/10.1159/000521259
- Multi-omic analysis unveils biological pathways in peripheral immune system associated to minimal hepatic encephalopathy appearance in cirrhotic patients.Sci. Rep. 2021; 11: 1907https://doi.org/10.1038/s41598-020-80941-7
- Reference-based comparison of adaptive immune receptor repertoires.bioRxiv. 2022; https://doi.org/10.1101/2022.01.23.476436
- Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire.Nat. Genet. 2017; 49: 659-665https://doi.org/10.1038/ng.3822
- The immuneML ecosystem for machine learning analysis of adaptive immune receptor repertoires.Nat. Mach. Intell. 2021; 3: 936-944https://doi.org/10.1038/s42256-021-00413-z
- Allelic variation in class I HLA determines CD8+ T cell repertoire shape and cross-reactive memory responses to SARS-CoV-2.Sci. Immunol. 2021;https://www.science.org/doi/abs/10.1126/sciimmunol.abk3070Date accessed: January 12, 2022
- Human T cell receptor occurrence patterns encode immune history, genetic background, and receptor specificity.ELife. 2018; 7: e38358https://doi.org/10.7554/eLife.38358
- immuneSIM: tunable multi-feature simulation of B- and T-cell receptor repertoires for immunoinformatics benchmarking.Bioinformatics. 2020; 36: 3594-3596https://doi.org/10.1093/bioinformatics/btaa158
C. Kanduri, M. Pavlović, L. Scheffer, K. Motwani, M. Chernigovskaya, V. Greiff, G.K. Sandve, Profiling the baseline performance and limits of machine learning models for adaptive immune receptor repertoire classification, (2021) 2021.05.23.445346. https://doi.org/10.1101/2021.05.23.445346.
- TCRpower: quantifying the detection power of T-cell receptor sequencing with a novel computational pipeline calibrated by spike-in sequences.Brief. Bioinform. 2022; : bbab566https://doi.org/10.1093/bib/bbab566
- Integrating T cell receptor sequences and transcriptional profiles by clonotype neighbor graph analysis (CoNGA).Nat. Biotechnol. 2022; 40: 54-63https://doi.org/10.1038/s41587-021-00989-2
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy