Abstract
Graphical abstract

Keywords
1. Introduction
- Emerson Ryan O
- DeWitt William S
- Vignali Marissa
- Gravley Jenna
- Hu Joyce K
- Osborne Edward J
- Desmarais Cindy
- Klinger Mark
- Carlson Christopher S
- Hansen John A
- et al.
- Amoriello Roberta
- Greiff Victor
- Aldinucci Alessandra
- Bonechi Elena
- Carnasciali Alberto
- Peruzzi Benedetta
- Repice Anna Maria
- Mariottini Alice
- Saccardi Riccardo
- Mazzanti Benedetta
- et al.
- Bandura Dmitry R
- Baranov Vladimir I
- Ornatsky Olga I
- Antonov Alexei
- Kinach Robert
- Lou Xudong
- Pavlov Serguei
- Vorobiev Sergey
- Dick John E
- Tanner Scott D
- Singh Mandeep
- Al-Eryani Ghamdan
- Carswell Shaun
- Ferguson James M
- Blackburn James
- Barton Kirston
- Roden Daniel
- Luciani Fabio
- Phan Tri Giang
- Junankar Simon
- et al.
- Gil Anna
- Kamga Larisa
- Chirravuri-Venkata Ramakanth
- Aslan Nuray
- Clark Fransenio
- Ghersi Dario
- Luzuriaga Katherine
- Selin Liisa K
2. General workflow for single-cell transcriptomics
2.1 Power calculation for single-cell transcriptomics
2.2 Pre-processing of single-cell RNA sequencing data
Pre-processing step | Goal | Method |
---|---|---|
Acquisition of initial gene expression matrix | Transformation of raw sequencing data to raw gene expression matrix. | Cell Ranger (10x Genomics) [159] Kalisto - bustools [ [160] ,[161] ]STARsolo [162] Alevin-fry [163] |
Quality control | Removal of low quality cells. | Using combinations of 4 metrics per barcode: (1) number of UMIs (2) number of detected genes (features) (3) fraction of reads that map to mitochondrial genes, (4) fraction of reads that map to ribosomal genes |
Identification and removal of multiplets | Manual inspection: Removal of multiplets when visualizing the distribution of the number of detected genes for all cells (Caution: potential loss of relevant cells) Computational doublet-detection methods (benchmarked in [164] ) | |
Normalization and scaling | Normalization to relative gene expression levels in order to adequately compare expression across cells. | Log normalization (most common) SCTransform [140] (shown to improve performance of downstream analysis) |
Integration of samples | Combining samples for analysis while removing technical variability such as batch- or sample -specific sequencing effects. | Manual inspection: Regressing out sources of variability. Batch correction algorithms: Harmony [141] , LIGER [165] , Seurat [166] , scGen [167] and scVI [168] |
Dimensionality reduction | Limit the amount of noise by reducing the high-dimensional gene expression matrix to a low- dimensional space, retaining the bulk of the information captured by the data. | Selecting the top n most variable genes (generally 1000 to 5000). Dimensionality reduction techniques: PCA followed by t-SNE [42] or UMAP [43] ) |
2.3 Common downstream analysis for single-cell transcriptomics

2.3.1 Clustering and cluster annotation
- Hughes Travis K
- Wadsworth II, Marc H
- Gierahn Todd M
- Do Tran
- Weiss David
- Andrade Priscila R
- Ma Feiyang
- Silva Bruno J de Andrade
- Shao Shuai
- Tsoi Lam C
- et al.
- Dutertre Charles-Antoine
- Becht Etienne
- Irac Sergio Erdal
- Khalilnezhad Ahad
- Narang Vipin
- Khalilnezhad Shabnam
- Ng Pei Y
- Hoogen Lucas L van den
- Leong Jing Yao
- Lee Bernett
- et al.
2.3.2 Differential cell type composition analysis
2.3.3 Differential gene expression and functional enrichment
- Finak Greg
- McDavid Andrew
- Yajima Masanao
- Deng Jingyuan
- Gersuk Vivian
- Shalek Alex K
- Slichter Chloe K
- Miller Hannah W
- Juliana McElrath M
- Prlic Martin
- et al.
- Subramanian Aravind
- Tamayo Pablo
- Mootha Vamsi K
- Mukherjee Sayan
- Ebert Benjamin L
- Gillette Michael A
- Paulovich Amanda
- Pomeroy Scott L
- Golub Todd R
- Lander Eric S
- et al.
2.3.4 Trajectory analysis
- Hashimoto Kosuke
- Kouno Tsukasa
- Ikawa Tomokatsu
- Hayatsu Norihito
- Miyajima Yurina
- Yabukami Haruka
- Terooatea Tommy
- Sasaki Takashi
- Suzuki Takahiro
- Valentine Matthew
- et al.
3. Extracting knowledge from TCR repertoires
Analysis | Description | Output | AIRR tools | Examples |
---|---|---|---|---|
Diversity analysis | Quantification of the diversity within a lymphocyte population. Diversity is typically expressed using Hill numbers. Alternatively, different estimation approaches exist to quantify true repertoire diversity (e.g. Chao2, ICE, DivE and Recon). | Combination of summary metrics that describe different aspects of the underlying frequency distribution. | Immcantation immunarch [104] VDJtools [135] | 169 , 170 , 171 , 172 , 173 , 174 , 175 ,
Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J Immunol. 2014; 192: 2689-2698 176 , 177 , 178 |
Clonal overlap | Quantification of the overlap between TCR repertoires. Popular metrics are the Jaccard or Morisita index. | Quantitative metric describing the degree of overlap between two repertoires. | Immcantation immunarch [104] VDJtools [135] | [ [179] ,[180] ] |
V(D)J gene usage | Evaluation of the distribution and co-occurrence of different V, D and J germline gene segments. | Potential biases in the use of specific V, D or J genes. | Immcantation immunarch [104] VDJtools [135] | 181 ,
Identification of a public cdr3 motif and a biased utilization of t-cell receptor v beta and j beta chains in hla-a2/melan-a-specific t-cell clonotypes of melanoma patients. J Transl Med. 2009; 7: 1-14 182 , 183 ,
Cd4+ t cells recognize conserved influenza a epitopes through shared patterns of v-gene usage and complementary biochemical features. Cell Rep. 2020; 32107885 184 |
Clonotype tracking | Track the frequency of a limited set of clonotypes across different time points or samples | Potentially expanding clones across time or treatment. | Immcantation immunarch [104] VDJtools [135] | 185 ,
Precise tracking of vaccine-responding t cell clones reveals convergent and personalized response in identical twins. Proc Natl Acad Sci. 2018; 115: 12704-12709 186 , George Elias, Pieter Meysman, Esther Bartholomeus, Nicolas De Neuter, Nina Keersmaekers, Arvid Suls, Hilde Jansens, Aisha Souquette, Hans De Reu, Evelien Smits, Eva Lion, Paul G. Thomas, Geert Mortier, Pierre Van Damme, Philippe Beutels, Kris Laukens, Viggo Van Tendeloo, and Benson Ogunjimi. Preexisting memory cd4 t cells in na¨ıve individuals confer robust immunity upon hepatitis b vaccination. bioRxiv, 2021. 187 |
CDR3 spectratyping | Evaluation of the CDR3 amino acid sequence length distribution. | Potential aberrations in the distribution of CDR3 length indicating expanded populations of clones with a bias in CDR3 length. | Immcantation immunarch [104] VDJtools [135] | [ [188] ,[189] ,[190] ,[136] ] |
K-mer & motif analysis | Decompose CDR3 sequences into overlapping k-mers and identify enriched subsequences that may represent important signatures contributing to the specificity of a TCR. | K-mers or sequence motifs enriched in one repertoire (or group of repertoires) versus another (group of) repertoire(s). | immunarch [104] | [ [10] ,
The tcr repertoire reconstitution in multiple sclerosis: comparing one-shot and continuous immunosuppressive therapies. Front Immunol. 2020; 11: 559 [191] ,[192] ,[193] ] |
TCR clustering | Epitope-specific grouping of TCRs based on properties of the TCR sequence. | Clusters of TCRs targeting similar epitopes. | TCRdist [194] GLIPH2 [195] iSMART [196] ClusTCR [197] GIANA [198] | 199 ,
Longitudinal analysis of t-cell receptor repertoires reveals persistence of antigen-driven cd4+ and cd8+ t-cell clusters in systemic sclerosis. J Autoimmun. 2021; 117102574 200 , 201 ,
Next-generation sequencing of t and b cell receptor repertoires from covid-19 patients showed signatures associated with severity of disease. Immunity. 2020; 53: 442-455 202 ,
Global analysis of shared t cell specificities in human non-small cell lung cancer enables hla inference and antigen discovery. Immunity. 2021; 54: 586-602 203 , 204 , 205
Single-cell approach to influenza-specific cd8+ t cell receptor repertoires across different age groups, tissues, and following influenza virus infection. Front Immunol. 2018; 9: 1453 |
Enrichment analysis | Perform statistical enrichment tests to identify clonotypes that are significantly enriched in one or a group of repertoires versus another (e.g. healthy versus disease). | A list of TCRs that are statistically enriched in a group of individuals. | VDJtools [135] ALICE [113] immuneML [117] Milena Pavlovi´c, Lonneke Scheffer, Keshav Motwani, Chakravarthi Kanduri, Radmila Kompova, Nikolay Vazov, Knut Waagan, Fabian L.M. Bernal, Alexandre Almeida Costa, Brian Corrie, Rahmad Akbar, Ghadi S. Al Hajj, Gabriel Balaban, Todd M. Brusko, Maria Chernigovskaya, Scott Christley, Lindsay G. Cowell, Robert Frank, Ivar Grytten, Sveinung Gundersen, Ingrid Hobæk Haff, Sepp Hochreiter, Eivind Hovig, Ping-Han Hsieh, G¨unter Klambauer, Marieke L. Kuijjer, Christin Lund-Andersen, Antonio Martini, Thomas Minotto, Johan Pensar, Knut Rand, Enrico Riccardi, Philippe A. Robert, Artur Rocha, Andrei Slabodkin, Igor Snapkov, Ludvig M. Sollid, Dmytro Titov, Cédric R. Weber, Michael Widrich, Gur Yaari, Victor Greiff, and Geir Kjetil Sandve. Immuneml: an ecosystem for machine learning analysis of adaptive immune receptor repertoires. bioRxiv, 2021. | [ [9] ,
Immunosequencing identifies signatures of cytomegalovirus exposure history and hla-mediated effects on the t cell repertoire. Nat Genet. 2017; 49: 659-665 [109] ,
High-resolution repertoire analysis reveals a major bystander activation of tfh and tfr cells. Proc Natl Acad Sci. 2018; 115: 9604-9609 [206] ] |
TCR-epitope specificity | Identify the epitope specificity of a TCR by matching against a database with known TCR-epitope interactions or predict the specificity of a TCR using machine learning models. | A list of matched or predicted TCR-epitope interactions. | VDJdb [105] TCRex
Vdjdb in 2019: database extension, new analysis infrastructure and a t-cell receptor motif compendium. Nucleic Acids Res. 2020; 48: D1057-D1062 [115] immuneML [117] TCRGP Milena Pavlovi´c, Lonneke Scheffer, Keshav Motwani, Chakravarthi Kanduri, Radmila Kompova, Nikolay Vazov, Knut Waagan, Fabian L.M. Bernal, Alexandre Almeida Costa, Brian Corrie, Rahmad Akbar, Ghadi S. Al Hajj, Gabriel Balaban, Todd M. Brusko, Maria Chernigovskaya, Scott Christley, Lindsay G. Cowell, Robert Frank, Ivar Grytten, Sveinung Gundersen, Ingrid Hobæk Haff, Sepp Hochreiter, Eivind Hovig, Ping-Han Hsieh, G¨unter Klambauer, Marieke L. Kuijjer, Christin Lund-Andersen, Antonio Martini, Thomas Minotto, Johan Pensar, Knut Rand, Enrico Riccardi, Philippe A. Robert, Artur Rocha, Andrei Slabodkin, Igor Snapkov, Ludvig M. Sollid, Dmytro Titov, Cédric R. Weber, Michael Widrich, Gur Yaari, Victor Greiff, and Geir Kjetil Sandve. Immuneml: an ecosystem for machine learning analysis of adaptive immune receptor repertoires. bioRxiv, 2021. [30] NetTCR [207] ERGO
Nettcr-2.0 enables accurate prediction of tcr-peptide binding by using paired tcrα and β sequence data. Commun Biol. 2021; 4: 1-13 [26] DeepTCR [116] ImRex [157] | [ [155] ,[156] ,[30] ,[26] ,[31] ,[157] ,[158] ] |
Network analysis | Represent the TCR repertoire as a network where nodes represent TCRs and the edges between them indicate similarity (typically hamming distance = 1). The repertoire architecture can be analyzed using various graph theoretic metrics. | Visualization of the repertoire architecture. Quantitative metrics of the repertoire architecture. | igraph [142] networkx [143] Cytoscape [208] | [ [154] ,[209] ,[210] ] |

3.1 Basic repertoire analysis
- Bagaev Dmitry V
- Vroomans Renske MA
- Samir Jerome
- Stervbo Ulrik
- Rius Cristina
- Dolton Garry
- Greenshields-Watson Alexander
- Attaf Meriem
- Egorov Evgeny S
- Zvyagin Ivan V
- et al.
- Ritvo Paul-Gydeon
- Saadawi Ahmed
- Barennes Pierre
- Quiniou Valentin
- Chaara Wahiba
- Soufi Karim El
- Bonnet Benjamin
- Six Adrien
- Shugay Mikhail
- Mariotti-Ferrandiz Encarnita
- et al.
3.2 Generation probability
3.3 Receptor specificity
- Bagaev Dmitry V
- Vroomans Renske MA
- Samir Jerome
- Stervbo Ulrik
- Rius Cristina
- Dolton Garry
- Greenshields-Watson Alexander
- Attaf Meriem
- Egorov Evgeny S
- Zvyagin Ivan V
- et al.
Milena Pavlovi´c, Lonneke Scheffer, Keshav Motwani, Chakravarthi Kanduri, Radmila Kompova, Nikolay Vazov, Knut Waagan, Fabian L.M. Bernal, Alexandre Almeida Costa, Brian Corrie, Rahmad Akbar, Ghadi S. Al Hajj, Gabriel Balaban, Todd M. Brusko, Maria Chernigovskaya, Scott Christley, Lindsay G. Cowell, Robert Frank, Ivar Grytten, Sveinung Gundersen, Ingrid Hobæk Haff, Sepp Hochreiter, Eivind Hovig, Ping-Han Hsieh, G¨unter Klambauer, Marieke L. Kuijjer, Christin Lund-Andersen, Antonio Martini, Thomas Minotto, Johan Pensar, Knut Rand, Enrico Riccardi, Philippe A. Robert, Artur Rocha, Andrei Slabodkin, Igor Snapkov, Ludvig M. Sollid, Dmytro Titov, Cédric R. Weber, Michael Widrich, Gur Yaari, Victor Greiff, and Geir Kjetil Sandve. Immuneml: an ecosystem for machine learning analysis of adaptive immune receptor repertoires. bioRxiv, 2021.
4. Generating matched single-cell gene expression and TCR data
4.1 Targeted enrichment of the V(D)J locus
4.2 Computational reconstruction of TCR sequences
Tool | Ref. | Version | Latest release | Source | Platform | Receptor type | Type of assembly | Assembler | Compatible with SMART-seq | Compatible with 10x |
---|---|---|---|---|---|---|---|---|---|---|
BASIC | [211] | 1.5.1 | 2019–07–12 | https://github.com/akds/BASIC | Python | B + T | Anchor-guided | Native | Yes | No |
MiXCR | [91] | 3.0.13 | 2020–04–15 | https://github.com/milaboratory/mixcr | Java | B + T | Mapping | Native | Yes | No |
scTCRseq | [212] | N.A. | 2016–06–09 | https://github.com/ElementoLab/scTCRseq | Python | T | de novo | GapFiller | Yes | No |
TraCeR | [213] | 0.6.0 | 2018–03–08 | https://github.com/Teichlab/tracer | Python | T | de novo | Trinity | Yes | No |
TRAPeS | [214]
Targeted reconstruction of t cell receptor sequence from single cell RNA-Seq links cdr3 length to t cell differentiation state. Nucleic Acids Res. 2017; 45 (e148–e148) | N.A. | 2019–10–13 | https://github.com/YosefLab/TRAPeS | Python | T | Anchor-guided | Native | Yes | No |
TRUST4 | [119] | 1.0.4 | 2021–05–13 | https://github.com/liulab-dfci/TRUST4 | C(++), Python | B + T | de novo | Native | Yes | Yes |
VDJPuzzle | [ [215] , [147] ] | 3.0 | 2020–03–19 | https://bitbucket.org/kirbyvisp/vdjpuzzle2 | Python | B + T | de novo | Trinity | Yes | No |
5. When to opt for single-cell over bulk approaches: features of single-cell T cell profiling
Bulk | Single-cell | |
---|---|---|
Repertoire coverage1 | High | Low |
Chain pairing | No | Yes |
Gene drop-out rate2 | Low | High |
Multimodality | No | Yes |
Cost per cell | Low | High |
Sample size3 | High | Low |
5.1 Single-cell sequencing allows integration of functional and immune receptor characteristics
- Yermanos Alexander
- Agrafiotis Andreas
- Kuhn Raphael
- Robbiani Damiano
- Yates Josephine
- Papadopoulou Chrysa
- Han Jiami
- Sandu Ioana
- Weber C´edric
- Bieberich Florian
- et al.

5.2 Power of multimodality: antigen-specificity profiling
- Bentzen Amalie Kai
- Marquard Andrea Marion
- Lyngaa Rikke
- Saini Sunil Kumar
- Ramskov Sofie
- Donia Marco
- Such Lina
- Furness Andrew JS
- McGranahan Nicholas
- Rosenthal Rachel
- et al.
6. Software packages for analyzing T cells at the single-cell level
Milena Pavlovi´c, Lonneke Scheffer, Keshav Motwani, Chakravarthi Kanduri, Radmila Kompova, Nikolay Vazov, Knut Waagan, Fabian L.M. Bernal, Alexandre Almeida Costa, Brian Corrie, Rahmad Akbar, Ghadi S. Al Hajj, Gabriel Balaban, Todd M. Brusko, Maria Chernigovskaya, Scott Christley, Lindsay G. Cowell, Robert Frank, Ivar Grytten, Sveinung Gundersen, Ingrid Hobæk Haff, Sepp Hochreiter, Eivind Hovig, Ping-Han Hsieh, G¨unter Klambauer, Marieke L. Kuijjer, Christin Lund-Andersen, Antonio Martini, Thomas Minotto, Johan Pensar, Knut Rand, Enrico Riccardi, Philippe A. Robert, Artur Rocha, Andrei Slabodkin, Igor Snapkov, Ludvig M. Sollid, Dmytro Titov, Cédric R. Weber, Michael Widrich, Gur Yaari, Victor Greiff, and Geir Kjetil Sandve. Immuneml: an ecosystem for machine learning analysis of adaptive immune receptor repertoires. bioRxiv, 2021.
Tool | Ref. | Version | Latest release | Platform | Receptor type | Integration with GE | 10x support | Pre-processing | Paired chains | Diversity/clonality | V(D)J usage | Repertoire overlap | Advanced visualization | Clustering | Documentation | AIRR-compliant |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CoNGA | [136] | 0.1.1 | 2021–08–23 | Python | B + T | Sc | Yes | Yes | Yes | No | No | No | Yes | Yes | Yes | No |
mvTCR | [ [95] ,[96] ] | 4.2.0 | 2021–02–07 | Python, R | B + T | N | Yes | Yes | Yes | No | No | No | No | No | No | No |
Platypus | [128]
Platypus: an open-access software for integrating lymphocyte single-cell immune repertoires with transcriptomes. NAR Genom Bioinform. 2021; 3: lqab023 | 0.6.1 | 2021–01–30 | R | B + T | Se | Yes | No | Yes | Yes (*) | Yes | Yes | Yes | Yes | Yes | Yes |
Scirpy | [125] | 0.6.1 | 2021–01–30 | Python | T | Sc | Yes | No | Yes | Yes (*) | Yes | Yes | Yes | Yes | Yes | Yes |
scRepertoire | [127] | 1.14 | 2021–02–25 | R | B + T | Se | Yes | Yes | Yes | Yes (**) | Yes | Yes | Yes | Yes | Yes | No |
Tessa | [144] | 1.0.0 | 2020–10–30 | Python, R | T | N | Yes | Yes | Yes | No | No | No | Yes | Yes | Yes | No |
VDJView | [126] | N.A. | 2021–05–17 | R | B + T | Se | Yes | No | Yes | No | Yes | Yes | Yes | Yes | No | No |
6.1 CoNGA
6.2 mvTCR
6.3 Platypus
- Yermanos Alexander
- Agrafiotis Andreas
- Kuhn Raphael
- Robbiani Damiano
- Yates Josephine
- Papadopoulou Chrysa
- Han Jiami
- Sandu Ioana
- Weber C´edric
- Bieberich Florian
- et al.
- Singh Mandeep
- Al-Eryani Ghamdan
- Carswell Shaun
- Ferguson James M
- Blackburn James
- Barton Kirston
- Roden Daniel
- Luciani Fabio
- Phan Tri Giang
- Junankar Simon
- et al.
6.4 Scirpy
6.5 scRepertoire
6.6 Tessa
6.7 VDJView
7. Challenges that remain for single-cell over bulk approaches
8. Perspective
CRediT authorship contribution statement
Declaration of Competing Interest
Acknowledgments
Appendix. Supplementary materials
References
- T cell receptor (tcr) signaling in health and disease.Signal Transduct Target Ther. 2021; 6: 1-26
- T-cell antigen receptor genes and t-cell recognition.Nature. 1988; 334: 395-402
- Comprehensive analysis of structural and sequencing data reveals almost unconstrained chain pairing in tcrαβ complex.PLoS Comput Biol. 2020; 16e1007714
- The many ˇ important facets of t-cell repertoire diversity.Nat Rev Immunol. 2004; 4: 123-132
- Estimating the diversity, completeness, and cross-reactivity of the t cell repertoire.Front Immunol. 2013; 4: 485
- Quantifying lymphocyte receptor diversity.(In)Systems immunology. CRC Press, 2018: 183-198
- Diversity and clonal selection in the human t-cell repertoire.Proc Natl Acad Sci. 2014; 111: 13139-13144
- How many different clonotypes do immune repertoires contain?.Curr Opin Syst Biol. 2019; 18: 104-110
- Immunosequencing identifies signatures of cytomegalovirus exposure history and hla-mediated effects on the t cell repertoire.Nat Genet. 2017; 49: 659-665
- The tcr repertoire reconstitution in multiple sclerosis: comparing one-shot and continuous immunosuppressive therapies.Front Immunol. 2020; 11: 559
- Flow cytometry: retrospective, fundamentals and recent instrumentation.Cytotechnology. 2012; 64: 109-130
- Seventeen-colour flow cytometry: unravelling the immune system.Nat Rev Immunol. 2004; 4: 648-655
- Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry.Anal Chem. 2009; 81: 6813-6822
- Memory t cells (cd45ro) role and evaluation in pathogenesis of lichen planus and lichenoid mucositis.J Clin Diagn Res: JCDR. 2017; 11: ZC84
- Over 1000 tools reveal trends in the single-cell RNA-Seq analysis landscape.Genome Biol. 2021; 22: 1-18
- Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics.Genome Biol. 2018; 19: 1-12
- High-throughput and single-cell T cell receptor sequencing technologies.Nat Methods. 2021;
- Single-cell rna sequencing technologies and bioinformatics pipelines.Exp Mol Med. 2018; 50: 1-14
- Single-cell sequencing techniques from individual to multiomics analyses.Exp Mol Med. 2020; 52: 1419-1427
- A multicenter study benchmarking single-cell rna sequencing technologies using reference samples.Nat Biotechnol. 2021; 39: 1103-1114
- Single-cell tcr and transcriptome analysis: an indispensable tool for studying t-cell biology and cancer immunotherapy.Front Immunol. 1972; 12: 2021
- Single-cell gene expression reveals a landscape of regulatory t cell phenotypes shaped by the tcr.Nat Immunol. 2018; 19: 291-301
- Organoid modeling of the tumor immune microenvironment.Cell. 2018; 175: 1972-1988
- TCR sequencing paired with massively parallel 3’ RNA-Seq reveals clonotypic t cell signatures.Nat Immunol. 2019; 20: 1692-1699
- High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes.Nat Commun. 2019; 10: 1-13
- Prediction of specific tcr-peptide binding from large dictionaries of tcr-peptide pairs.Front Immunol. 2020; 11: 1803
- Cdr3α drives selection of the immunodominant epstein barr virus (ebv) brlf1-specific cd8 t cell receptor repertoire in primary infection.PLoS Pathog. 2019; 15e1008122
- Single t cell sequencing demonstrates the functional role of αβ tcr pairing in cell lineage and antigen specificity.Front Immunol. 2019; 10: 1516
- Epstein-barr virus epitope–major histocompatibility complex interaction combined with convergent recombination drives selection of diverse t cell receptor α and β repertoires.mBio. 2020; 11 (e00250–e00220)
- Predicting recognition between t cell receptors and epitopes with tcrgp.PLoS Comput Biol. 2021; 17e1008814
- Contribution of t cell receptor alpha and beta cdr3, mhc typing, v and j genes to peptide binding prediction.Front Immunol. 2021; 12
- A framework for highly multiplexed dextramer mapping and prediction of t cell receptor sequences to antigen specificity.Sci Adv. 2021; 7: eabf5835
- Massively parallel interrogation and mining of natively paired human tcrαβ repertoires.Nat Biotechnol. 2020; 38: 609-619
- A single-cell map of intratumoral changes during anti-pd1 treatment of patients with breast cancer.Nat Med. 2021; 27: 820-832
- Single-cell landscape of immunological responses in patients with covid-19.Nat Immunol. 2020; 21: 1107-1118
- scpower accelerates and optimizes the design of multi-sample single cell transcriptomic studies.Nat Commun. 2021; 12: 1-18
- A computational method to aid the design and analysis of single cell rna-seq experiments for cell type identification.BMC Bioinf. 2019; 20: 1-6
- Scopit: sample size calculations for single-cell sequencing experiments.BMC Bioinf. 2019; 20: 1-6
- Current best practices in single cell RNA-Seq analysis: a tutorial.Mol Syst Biol. 2019; 15: e8746
- Benchmarking umi-based single-cell RNA-Seq preprocessing workflows.Genome Biol. 2021; 22: 1-32
- Identifying and removing the cell-cycle effect from single-cell rna-sequencing data.Sci Rep. 2016; 6: 1-10
- Visualizing data using t-sne.J Mach Learn Res. 2008; 9
Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.
- Fast unfolding of communities in large networks.J Stat Mech: Theory Exp. 2008; 2008: P10008
- A smart local moving algorithm for large-scale modularity-based community detection.Eur Phys. J. B. 2013; 86: 1-14
- A simple acceleration method for the louvain algorithm.Int. J. Comput Electr Eng. 2016; 8: 207
- Scalable and efficient flow-based community detection for large-scale graph analysis.ACM Transac Knowl Discov Data (TKDD). 2017; 11: 1-30
- Faster unfolding of communities: Speeding up the Louvain algorithm.Phys Rev E. 2015; 92032801
- From Louvain to Leiden: guaranteeing well-connected communities.Sci Rep. 2019; 9: 1-12
- Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage.Nat Immunol. 2019; 20: 163-172
- Integrated analysis of multimodal single-cell data.Cell. 2021;
- Interpretation of t cell states from single-cell transcriptomics data using reference atlases.Nat Commun. 2021; 12: 1-19
- Second-strand synthesisbased massively parallel scRNA-seq reveals cellular states and molecular features of human inflammatory skin pathologies.Immunity. 2020; 53: 878-894
- Single-cell rna-seq reveals new types of human blood dendritic cells, monocytes, and progenitors.Science. 2017; 356
- Singlecell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells.Immunity. 2019; 51: 573-589
- Pathophysiology of cd4+ t-cell depletion in hiv-1 and hiv-2 infections.Front Immunol. 2017; 8: 580
- Dmso cryopreservation is the method of choice to preserve cells for droplet-based single-cell rna sequencing.Sci Rep. 2019; 9: 1-14
- Classification of low quality cells from single-cell rna-seq data.Genome Biol. 2016; 17: 1-15
- Pathogenic t-cells and inflammatory monocytes incite inflammatory storms in severe covid-19 patients.Natl Sci Rev. 2020; 7: 998-1002
- Bias, robustness and scalability in single-cell differential expression analysis.Nat Methods. 2018; 15: 255-261
Jordan W Squair, Matthieu Gautier, Claudi Kathe, Mark A Anderson, Nicholas D James, Thomas H Hutson, R´emi Hudelle, Taha Qaiser, Kaya JE Matson, Quentin Barraud, et al. Confronting false discoveries in single-cell differential expression. bioRxiv, 2021.
- Edger: a bioconductor package for differential expression analysis of digital gene expression data.Bioinformatics. 2010; 26: 139-140
- Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation.Nucleic Acids Res. 2012; 40: 4288-4297
- Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2.Genome Biol. 2014; 15: 1-21
- Mast: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell rna sequencing data.Genome Biol. 2015; 16: 1-13
- Tutorial: guidelines for the computational analysis of singlecell rna sequencing data.Nat Protoc. 2021; 16: 1-9
- Lineage tracking reveals dynamic relationships of t cells in colorectal cancer.Nature. 2018; 564: 268-272
- Gene set enrichment analysis: a knowledge-based approach for interpreting genomewide expression profiles.Proc Natl Acad Sci. 2005; 102: 15545-15550
- The molecular signatures database hallmark gene set collection.Cell Syst. 2015; 1: 417-425
- The reactome pathway knowledgebase.Nucleic Acids Res. 2020; 48: D498-D503
- Gene ontology: tool for the unification of biology.Nat Genet. 2000; 25: 25-29
- The Gene Ontology Consortium. The gene ontology resource: enriching a gold mine.Nucleic Acids Res. 2021; 49: D325-D334
- Trajectory-based differential expression analysis for singlecell sequencing data.Nat Commun. 2020; 11: 1-13
- The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.Nat Biotechnol. 2014; 32: 381-386
- Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics.BMC Genom. 2018; 19: 1-16
- RNA velocity of single cells.Nature. 2018; 560: 494-498
- Generalizing rna velocity to transient cell states through dynamical modeling.Nat Biotechnol. 2020; 38: 1408-1414
- A comparison of single-cell trajectory inference methods.Nat Biotechnol. 2019; 37: 547-554
- Single-cell transcriptomics reveals expansion of cytotoxic cd4 t cells in supercentenarians.Proc Natl Acad Sci. 2019; 116: 24242-24251
- Imgt/v-quest, an integrated software program for immunoglobulin and t cell receptor v–j and v–d–j rearrangement analysis.Nucleic Acids Res. 2004; 32: W435-W440
- Imgt/highv-quest: the imgt® web portal for immunoglobulin (ig) or antibody and t cell receptor (tr) analysis from ngs high throughput and deep sequencing.Immun Res. 2012; 8: 26
- Igblast: an immunoglobulin variable domain sequence analysis tool.Nucleic Acids Res. 2013; 41: W34-W40
- Decombinator: a tool for fast, efficient gene assignment in T-cell receptor sequences using a finite state machine.Bioinformatics. 2013; 29: 542-550
- Fast multiclonal clusterization of v (d) j recombinations from high-throughput sequencing.BMC Genom. 2014; 15: 1-12
- Imonitor: a robust pipeline for tcr and bcr repertoire analysis.Genetics. 2015; 201: 459-472
- Imseq—a fast and error aware approach to immunogenetic sequence analysis.Bioinformatics. 2015; 31: 2963-2971
- Lymanalyzer: a tool for comprehensive analysis of next generation sequencing data of t cell receptors and immunoglobulins.Nucleic Acids Res. 2016; 44 (e31–e31)
- Tcrklass: a new k-string–based algorithm for human and mouse tcr repertoire characterization.J Immunol. 2015; 194: 446-454
- RTCR: a pipeline for complete and accurate recovery of t cell repertoires from high throughput sequencing data.Bioinformatics. 2016; 32: 3098-3106
- Trig: a robust alignment pipeline for non-regular t-cell receptor and immunoglobulin sequences.BMC Bioinf. 2016; 17: 1-9
- Mixcr: software for comprehensive adaptive immunity profiling.Nat Methods. 2015; 12: 380-381
- High-throughput sequencing of the t-cell receptor repertoire: pitfalls and opportunities.Briefings Bioinf. 2018; 19: 554-565
- Using t cell receptor repertoires to understand the principles of adaptive immune recognition.Annu Rev Immunol. 2019; 37: 547-570
- Augmenting adaptive immunity: progress and challenges in the quantitative engineering and analysis of adaptive immune receptor repertoires.Mol Syst Des Eng. 2019; 4: 701-736
- presto: a toolkit for processing high-throughput sequencing raw reads of lymphocyte receptor repertoires.Bioinformatics. 2014; 30: 1930-1932
- Change-o: a toolkit for analyzing large-scale b cell immunoglobulin repertoire sequencing data.Bioinformatics. 2015; 31: 3356-3358
- Automated analysis of high-throughput b-cell sequencing data reveals a high frequency of novel immunoglobulin v gene segment alleles.Proc Natl Acad Sci. 2015; 112: E862-E870
- A spectral clustering-based method for identifying clones from high-throughput b cell repertoire sequencing data.Bioinformatics. 2018; 34: i341-i349
- The repertoire dissimilarity index as a method to compare lymphocyte receptor repertoires.BMC Bioinf. 2017; 18: 1-8
- Rabhit: R antibody haplotype inference tool.Bioinformatics. 2019; 35: 4840-4842
- Dynamics of immunoglobulin sequence diversity in HIV-1 infected individuals.Philos Trans R Soc B: Biol Sci. 2015; 37020140241
- Sumrep: a summary statistic framework for immune receptor repertoire comparison and model validation.Front Immunol. 2019; 10: 2533
- Airr community standardized representations for annotated immune repertoires.Front Immunol. 2018; 9: 2206
ImmunoMind Team. Immunarch: an R Package for painless bioinformatics analysis of T-Cell and B-cell immune repertoires, August 2019.
- Vdjdb in 2019: database extension, new analysis infrastructure and a t-cell receptor motif compendium.Nucleic Acids Res. 2020; 48: D1057-D1062
- Mcpas-tcr: a manually curated catalogue of pathology-associated t cell receptor sequences.Bioinformatics. 2017; 33: 2924-2929
- Pird: Pan immune repertoire database.Bioinformatics. 2020; 36: 897-903
- A framework for annotation of antigen specificities in high-throughput t-cell repertoire sequencing studies.Front Immunol. 2019; 10: 2159
- High-resolution repertoire analysis reveals a major bystander activation of tfh and tfr cells.Proc Natl Acad Sci. 2018; 115: 9604-9609
- Statistical inference of the generation probability of t-cell receptors from sequence repertoires.Proc Natl Acad Sci. 2012; 109: 16161-16166
- Highthroughput immune repertoire analysis with IGoR.Nat Commun. 2018; 9: 1-10
- Olga: fast computation of generation probabilities of b-and t-cell receptor amino acid sequences and motifs.Bioinformatics. 2019; 35: 2974-2981
- Detecting t cell receptors involved in immune responses from single repertoire snapshots.PLoS Biol. 2019; 17e3000314
- The immune epitope database (iedb): 2018 update.Nucleic Acids Res. 2019; 47: D339-D343
- Detection of enriched t cell epitope specificity in full t cell receptor sequence repertoires.Front Immunol. 2019; 10: 2820
- Deeptcr is a deep learning framework for revealing sequence concepts within t-cell repertoires.Nat Commun. 2021; 12: 1-12
Milena Pavlovi´c, Lonneke Scheffer, Keshav Motwani, Chakravarthi Kanduri, Radmila Kompova, Nikolay Vazov, Knut Waagan, Fabian L.M. Bernal, Alexandre Almeida Costa, Brian Corrie, Rahmad Akbar, Ghadi S. Al Hajj, Gabriel Balaban, Todd M. Brusko, Maria Chernigovskaya, Scott Christley, Lindsay G. Cowell, Robert Frank, Ivar Grytten, Sveinung Gundersen, Ingrid Hobæk Haff, Sepp Hochreiter, Eivind Hovig, Ping-Han Hsieh, G¨unter Klambauer, Marieke L. Kuijjer, Christin Lund-Andersen, Antonio Martini, Thomas Minotto, Johan Pensar, Knut Rand, Enrico Riccardi, Philippe A. Robert, Artur Rocha, Andrei Slabodkin, Igor Snapkov, Ludvig M. Sollid, Dmytro Titov, Cédric R. Weber, Michael Widrich, Gur Yaari, Victor Greiff, and Geir Kjetil Sandve. Immuneml: an ecosystem for machine learning analysis of adaptive immune receptor repertoires. bioRxiv, 2021.
- Benchmarking of T cell receptor repertoire profiling methods reveals large systematic biases.Nat Biotechnol. 2021; 39: 236-245
- Trust4: Immune repertoire reconstruction from bulk and single-cell RNA-Seq data.Nat Methods. 2021; (pages): 1-4
- Antigen receptor repertoire profiling from rna-seq data.Nat Biotechnol. 2017; 35: 908-911
- Impact of sequencing depth and read length on single cell RNA sequencing data of t cells.Sci Rep. 2017; 7: 1-11